,昨晚dify突然发布了他们最新、最强的版本v1.0.0,官方号称dify v1.0.0是目前世界上最好的LLM应用开发平台!
今天实际体验之后感觉确实🐂🍺,相当开放、特别自由
估计以后开发者都不需要键盘了。
这位朋友应该也是看了dify v1.0.0的报道,想安装dify。
这教程不就来了嘛~
一、dify v1.0.0更新内容介绍
我们先来看一下这次dify v1.0.0都有哪些重磅更新
1. 插件机制 (Plugin System)
核心变化:将原有的模型和工具都改造成插件形式
应用场景:想用新的 AI 模型时,直接安装对应插件即可
需要连接 Slack 时,安装 Slack 插件就能实现集成
2. 智能工作流 (Intelligent Workflow)
新增 Agent 节点:作为工作流和聊天流的决策中心
通俗解释:相当于一个智能管家,可以根据需求自动调用合适的流程、工具
应用场景:客服机器人可以自动判断用户意图,选择合适的回复方式
数据分析任务可以自动选择合适的分析工具和展示方式
3. 开放生态系统 (Open Ecosystem)
Dify Marketplace:官方插件市场
已有 120+ 插件,包括:模型:OpenAI 、Gemini 2.0 、DeepSeek-R1 等
工具:Perplexity 、Discord 、Slack 等
应用场景:企业可以在市场中找到所需的专业工具
开发者可以发布自己的插件获得收益
4. 多模态交互 (Multimodal I/O)
支持多种数据类型:文本、图像、视频、语音
应用场景:智能客服可以处理图片问题
教育应用可以结合视频和语音进行互动
5. 核心能力增强
推理能力 (Reasoning):提升问题解决能力
执行能力 (Action):可以操作软件和物联网设备
动态记忆 (Dynamic Memory):优化上下文理解
dify v1.0.0目前确实是我认为最强的开源LLM应用开发平台,但是不是世界最强,不好说,毕竟还有字节的扣子。
但dify在开源里面几乎没有对手,从75.5K Star就可以看出,大家对它的认可。
dify github地址:https://github.com/langgenius/dify
二、dify v1.0.0本地部署
本次内容以windows为例,使用docker-compose.yml方式部署(Linux服务器同理)
我们需要先把dify项目 拉取/下载 到本地
dify v1.0.0我已经给大家打包好了,公众号后台私信:“dify1.0” 获取项目包
解压之后,进入dify/docker目录下
然后在地址栏输入cmd
输入cmd之后回车,进入yaml文件当前目录下的控制台
输入指令:docker-compose up -d 一键启动dify
不过dify的镜像地址都在国外,国内服务器,如果没有网络环境的话,是无法拉取到dify的镜像的。
没有网络环境的朋友需要配置镜像加速地址,这样才能顺利拉取到dify的镜像。
镜像加速地址配置(相当全)
"registry-mirrors": [` `"https://dockerpull.org",` `"https://hub.geekery.cn",` `"https://docker.1ms.run",` `"https://docker.1panel.dev",` `"https://docker.1panel.live",` `"https://docker.foreverlink.love",` `"https://docker.fxxk.dedyn.io",` `"https://dytt.online",` `"https://func.ink",` `"https://lispy.org",` `"https://docker.xiaogenban1993.com",` `"https://docker.xn--6oq72ry9d5zx.cn",` `"https://docker.zhai.cm",` `"https://docker.5z5f.com",` `"https://a.ussh.net",` `"https://docker.cloudlayer.icu",` `"https://docker.linkedbus.com",` `"https://docker.nju.edu.cn",` `"https://docker.m.daocloud.io",` `"https://dockerproxy.com",` `"https://hub-mirror.c.163.com",` `"https://docker.mirrors.ustc.edu.cn",` `"https://registry.docker-cn.com",` `"https://registry.cn-hangzhou.aliyuncs.com",` `"https://9cpn8tt6.mirror.aliyuncs.com",` `"https://mirror.ccs.tencentyun.com",` `"https://2a6bf1988cb6428c877f723ec7530dbc.mirror.swr.myhuaweicloud.com",` `"https://mirror.baidubce.com",` `"https://dockerhub.icu",` `"https://docker.registry.cyou",` `"https://docker-cf.registry.cyou",` `"https://docker-cf.jsdelivr.fyi",` `"https://docker.jsdelivr.fyi",` `"https://dockertest.jsdelivr.fyi",` `"https://mirror.aliyuncs.com",` `"https://docker.rainbond.cc"` `]
在windows的docker-desktop中,把镜像加速地址配置到如下图位置(注意保持json格式,配置完毕点击右下角 Apple & restart)
使用Linux服务器的朋友请将上述加速地址添加到/etc/docker/daemon.json
文件中,然后执行以下命令重启Docker:
systemctl daemon-reload && systemctl restart docker
加速地址配置完毕之后,我们就可以再次执行:docker-compose up -d
PS:docker-compose up -d命令一定要在yaml文件所在目录的控制台或者命令行执行
可以看到已经开始拉取镜像了
PS:虽然配置了镜像加速地址,但是拉取速度还是较慢的,有网络环境的朋友建议直接搞(不用配置加速地址)
执行完毕,看到如下日志就代表dify v1.0.0启动成功啦
打开浏览器访问:127.0.0.1 验证一下
PS:第一次访问需要先设置最高管理权限账号、密码
点击右上角头像->设置->模型供应商
我们安装DeepSeek(深度求索)
安装完毕之后,到DeepSeek开放平台获取DeepSeek的apikey
DeepSeek开放平台地址:https://platform.deepseek.com/
获取DeepSeek官方apikey(别忘了充值一定额度,否则无法使用)
回到dify这边进行配置(点击深度求索的设置)
将DeepSeek官方apikey粘贴 保存
dify非常好的一点就是设置好apikey之后能够自适应添加模型,而不用额外手动填写模型名称了。
接下来我们在 工作室->创建空白应用
选择聊天助手,创建一个简单的应用
右上角这里选择deepseek-reasoner模型(r1)
在调试与预览界面可以进行聊天测试
至此,我们就把DeepSeek接入了本地dify v1.0.0中。
如果觉得官方的API慢,可以换成硅基流动的。
DeepSeek是目前最好的开源大模型
Dify v1.0.0是目前最好的开源大模型应用平台
DeepSeek + Dify v1.0.0可谓强强联手!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。