在数字化转型的浪潮中,多模态工作流正逐渐成为推动各行业创新发展的关键力量。随着人工智能、大数据、物联网等技术的飞速发展,我们正处于一个信息爆炸的时代,数据的形式和来源日益丰富多样,从传统的文本、图像,到音频、视频,甚至是传感器数据等。如何高效地整合、处理和利用这些多模态数据,成为了摆在企业和开发者面前的重要课题。
多模态工作流,简单来说,就是能够处理多种数据模态的工作流程。它打破了传统工作流仅依赖单一数据形式的局限,通过融合不同模态的数据,为用户提供更加全面、准确和智能的服务。例如,在智能客服领域,多模态工作流可以同时处理文本和语音数据,用户既可以通过文字输入问题,也可以直接语音提问,系统能够根据用户的输入方式自动切换处理模式,并给出精准的回答。这种智能化的交互方式,大大提升了用户体验,提高了工作效率。
在图像识别与分析领域,多模态工作流同样发挥着重要作用。通过结合图像和文本信息,不仅可以识别图像中的物体,还能对其进行详细的描述和解释。比如,在医学影像诊断中,医生可以借助多模态工作流技术,将患者的 X 光、CT 等影像数据与病历文本信息相结合,更准确地判断病情,制定治疗方案。
正是在这样的背景下,flowmix/flow 多模态工作流平台应运而生,为我们提供了一个强大而灵活的多模态工作流解决方案。
flowmix/flow 致力于提供一套开箱即用的流程可视化搭建底座,能够支撑各种复杂工作流场景的设计。它汲取了市面上主流工作流引擎的设计经验,并对性能做了极致的优化,目前其搭建性能和所见即所得的 UI 更新流畅度都非常出色。在功能方面,flowmix/flow 十分丰富且强大。它支持节点动画配置,整套设计架构支持多种类型的属性编辑,包括样式、数据、动画等。用户可以轻松给节点配置不同的动画效果,并设置动画的时长、次数等,为工作流增添了动态和交互性。
演示地址:https://flowmix.turntip.cn/flow
核心功能大揭秘
(一)节点动画配置
在 flowmix/flow 平台上,我们可以为节点赋予独特的动画效果,让整个工作流更加生动形象。比如,当一个任务节点完成时,可以设置它以淡入淡出的动画效果显示,或者让它从屏幕的一侧滑动进入,吸引用户的注意力。通过设置动画时长,可以控制动画的播放速度,比如将时长设置为 2 秒,使动画的过渡更加自然流畅;设置动画次数,如循环播放 3 次,以强化特定节点的展示效果。这些动画效果不仅增强了可视化效果,还能帮助用户更好地理解工作流的执行过程,提升了交互的趣味性和吸引力。
(二)参考线吸附
参考线吸附功能是 flowmix/flow 的一大贴心设计。当我们在画布上拖拽节点时,参考线会自动出现,就像有一双无形的手在帮助你精准定位。比如,当想要将一个新节点放置在与其他节点水平或垂直对齐的位置时,参考线会自动吸附,确保节点的位置精确无误。这一功能大大提高了工作流设计的准确性和效率,让设计更加规范、美观,即使是复杂的工作流布局,也能轻松应对,提升了整体的使用体验。
(三)节点自动创建与连线
在 flowmix/flow 中,单机节点即可自动创建后续节点,并完成自动连线,极大地简化了工作流的创建过程。比如,在设计一个项目管理工作流时,当你点击 “需求分析” 节点,系统会自动在其后创建 “设计方案” 节点,并将两者连线,清晰地展示工作流程的顺序。后续平台还计划实现点击 “+” 号,支持用户选择不同类型的节点进行创建,进一步丰富工作流的创建方式,满足更多复杂业务场景的需求 。
(四)边的自动创建与节点布局
在工作流的边线上点击,即可创建新节点,同时其他节点的位置会自动计算并重新布局。例如,在一个生产流程工作流中,当我们需要在已有的 “生产加工” 和 “质量检测” 节点之间添加一个 “半成品检验” 节点时,只需在连接这两个节点的边上点击,新节点就会自动创建,并且整个工作流的节点布局会自动调整,保持整洁和美观。这种智能化的设计,让工作流的调整更加灵活高效,减少了手动布局的繁琐操作。
(五)图层管理面板
当画布中的元素众多时,图层管理面板就发挥了重要作用。它就像一个文件管理器,将工作流中的各个节点按照图层进行分类管理。比如,你可以将所有的任务节点放在一个图层,将条件判断节点放在另一个图层。通过图层管理面板,你可以快速定位到具体的节点,还支持节点反选图层,方便进行批量操作。例如,当你需要对所有的任务节点进行样式修改时,只需在图层管理面板中选中任务节点所在的图层,即可一次性完成所有节点的样式调整,大大提高了工作效率。
应用场景分析
(一)产品 / 技术架构图绘制
在产品或技术架构设计中,flowmix/flow 的优势尽显。以一款移动应用的架构设计为例,我们可以使用不同的节点代表各个功能模块,如用户界面、数据存储、网络请求等。通过参考线吸附功能,精准地排列这些节点,使其布局清晰合理。利用边的自动创建和节点自动化布局功能,轻松添加新的节点和连线,展示模块之间的关系。例如,当需要添加一个新的支付功能模块时,只需在相关边线上点击创建新节点,系统会自动调整布局,让整个架构图始终保持整洁美观。这种直观的方式,让团队成员能够快速理解架构的设计思路,提高沟通效率,也方便在项目迭代过程中对架构进行修改和完善。
(二)组织结构图搭建
flowmix/flow 的搭建组织结构图功能,能够清晰展示团队架构和人员关系。在一个中型企业的组织架构搭建中,我们可以将公司的各个部门,如研发部、市场部、财务部等作为主要节点,部门负责人作为子节点连接在相应部门下。通过节点的层级关系和连线,直观地呈现出汇报关系和管理结构。利用图层管理面板,将不同层级或不同类型的节点放在不同图层,方便进行管理和查看。比如,将管理层节点放在一个图层,普通员工节点放在另一个图层,当需要查看管理层架构时,只需切换到相应图层即可。这样的组织结构图,无论是对于新员工了解公司架构,还是管理层进行人员调配和决策,都提供了极大的便利。
(三)思维导图制作
制作思维导图时,flowmix/flow 的便捷性让人眼前一亮。以一个项目策划为例,你可以将项目的主题作为中心节点,然后围绕它展开各个子节点,如项目目标、任务分解、时间安排、资源需求等。通过单机节点自动创建后续节点的功能,快速构建思维导图的框架。利用丰富的节点样式和动画效果,突出重点内容,比如为重要的任务节点设置闪烁动画,使其更加醒目。同时,支持对节点进行编辑和添加注释,详细说明每个任务的具体要求和注意事项。这种可视化的思维导图,能够帮助你快速整理思路,全面规划项目,也便于团队成员之间的协作和沟通,提高项目执行的效率。
(四)多画布设计
flowmix/flow 支持多画布设计,为复杂项目的多场景展示提供了有力支持。在一个大型软件开发项目中,可能需要展示不同阶段的工作流程,如需求分析阶段、设计阶段、开发阶段、测试阶段等。你可以为每个阶段创建一个独立的画布,在每个画布上详细绘制相应的工作流。例如,在需求分析画布上,展示用户需求收集、需求整理和分析的流程;在设计阶段画布上,呈现软件架构设计、数据库设计等流程。通过多画布之间的切换和关联,能够全面、系统地展示项目的各个方面,满足不同场景下的展示和沟通需求,让项目团队成员和相关利益者对项目有更清晰的认识。
(五)任务管理与流程看板
在任务管理和流程看板方面,flowmix/flow 同样表现出色。以一个电商运营团队为例,我们可以将订单处理流程作为一个工作流,从订单接收、商品发货、物流跟踪到客户反馈处理,每个环节设置为一个节点。通过节点的颜色、大小等样式来表示任务的优先级、进度等信息,比如将紧急订单的节点设置为红色,已完成的任务节点设置为绿色。利用节点动画配置,当任务状态发生变化时,以动画效果提示团队成员。同时,结合图层管理面板,将不同类型的任务放在不同图层,方便进行分类管理。这样的任务管理和流程看板,能够让团队成员实时了解工作进展,及时发现和解决问题,大大提高了工作效率。
演示地址:https://flowmix.turntip.cn/flow
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。