作为一名深耕软件测试领域多年的老测试人,我在日常工作中踩过无数的坑,也见证了各种工具的兴衰。今天就想和大家聊聊在前端测试里,那些让人头疼不已的问题。
环境割裂:频繁切换,效率低下
在传统的前端测试流程中,我们常常需要在多个环境之间来回切换。浏览器控制台、日志文件以及各种测试工具,就像三座孤岛,彼此之间缺乏有效的连接。每次发现一个问题,我们都得在这几个环境里反复穿梭,一会儿在浏览器控制台查看实时报错信息,一会儿又打开日志文件查找相关记录,还要切换到测试工具去执行各种测试用例。这就好比你在做一顿大餐,一会儿要去厨房拿食材,一会儿又要去客厅找调料,来来回回,忙得晕头转向,时间和精力就在这频繁的切换中被大量消耗,工作效率自然高不起来。
信息缺失:偶现异常,难以复现
前端测试最让人崩溃的,莫过于那些偶现的异常。这些异常就像幽灵一样,时有时无,当你想抓住它们的时候,它们却消失得无影无踪。好不容易在测试过程中发现了一个页面显示异常或者功能无法正常使用的问题,满心欢喜地想要深入排查,结果一刷新页面,关键的日志信息就这么没了。没有了这些关键信息,就像侦探失去了线索,想要定位问题根源简直难如登天。曾经我在测试一个电商APP
的支付功能时,就遇到过支付页面偶尔会出现空白的情况,我反复操作,抓包分析,可每次都因为关键日志的缺失而无功而返,最后经过一番艰难的排查,才发现是WebSocket
大包被截断导致的渲染异常,要是当时关键信息不缺失,也不至于耗费这么多时间和精力。
协作断层:沟通失真,效率受损
软件测试从来不是一个人的战斗,需要测试人员和开发人员紧密协作。但在实际工作中,由于缺乏有效的沟通工具和协作平台,我们和开发人员之间的沟通往往依赖截图和文字描述,这就很容易出现上下文传递失真的情况。测试人员发现问题后,用截图和文字详细描述问题现象,可开发人员拿到这些信息后,却很难完全还原当时的场景,理解问题的本质。就像玩传话游戏一样,信息在传递过程中不断被扭曲,导致开发人员花费大量时间去理解问题,排查问题的效率也大打折扣。之前参与一个电商项目时,支付页面偶现空白,我反复抓包把相关数据和截图发给开发,可他们就是定位不到问题,最后开了个线上会议,现场复现才发现是WebSocket
大包被截断导致渲染异常,要是一开始沟通就更高效,项目进度也不会被耽误。
核心突破:MCP 协议的三大革新
BrowserTools MCP
作为一款全新的测试工具,正是为了解决上述痛点而诞生。它基于Anthropic
的模型上下文协议(MCP
),通过Chrome
扩展程序,实现了AI
应用对浏览器数据的捕获和分析,为开发者提供了强大的浏览器监控和交互能力。其核心突破主要体现在以下三个方面。
全链路数据捕获
在BrowserTools MCP
中,Chrome
扩展就像是一个敏锐的观察者,实时监控着控制台日志、XHR
请求以及DOM
状态。一旦有新的日志产生,或者XHR
请求发生,它都能第一时间捕捉到。比如,当你在测试一个电商网站的商品详情页时,用户点击 “加入购物车” 按钮后,Chrome
扩展会立刻捕获到相关的XHR
请求,包括请求的URL
、参数以及响应数据,同时,控制台输出的关于购物车操作的日志也会被精准记录。
在实际测试中,日志数据常常会出现超长的情况,这不仅会影响数据的传输效率,还可能导致Token
溢出。BrowserTools MCP
的智能截断功能就派上了用场,它会自动对超长日志进行处理,保留关键信息,去除冗余部分,确保数据的有效传输。就好比整理一份冗长的报告,它能快速提取出核心要点,让你一目了然。
对于测试过程中涉及的敏感信息,如用户的登录密码、银行卡号等,BrowserTools MCP
会在本地存储数据时自动进行脱敏处理。它就像一个严格的保密卫士,将敏感信息隐藏起来,只展示经过处理后的安全数据,从而有效地保护了用户隐私。
AI 驱动的测试协同
MCP
服务器在整个测试协同过程中扮演着关键角色,它为各种工具调用提供了标准化接口。这就好比一个大型交通枢纽,不同的交通工具(工具)都可以在这里找到对应的停靠点(接口),有序地进行交互。无论是调用数据库查询工具,还是使用接口测试工具,都能通过这个标准化接口实现。
有了MCP
服务器的支持,像Cursor
、Claude
等客户端就可以直接发起测试指令。比如,你在Cursor
中编写测试代码时,发现需要查询数据库中的某些数据来验证功能是否正常,只需直接在Cursor
中输入自然语言指令,如 “查询用户表中所有用户的信息”,Cursor
就能通过MCP
服务器将指令传递给相应的数据库查询工具,并获取结果。
BrowserTools MCP
还支持动态流程编排,这意味着它可以根据测试需求,灵活组合多个工具。在测试一个复杂的电商系统时,可能需要先调用接口测试工具发送订单创建请求,然后使用数据库查询工具验证订单是否成功插入数据库,最后再调用页面元素分析工具检查订单详情页面的展示是否正确。BrowserTools MCP
能够按照设定的逻辑,自动协调这些工具的调用顺序,实现复杂测试流程的自动化。
开发测试一体化
在开发测试一体化方面,BrowserTools MCP
让我们可以在熟悉的IDE
内完成一系列原本需要在不同工具中进行的操作。在测试一个后端接口时,以往我们可能需要打开专门的数据库管理工具进行查询,现在通过BrowserTools MCP
集成的数据库查询功能,直接在IDE
中就能执行SQL
语句,查看数据库中的数据,大大提高了工作效率。
通过实时环境访问功能,AI
代理可以直接分析页面元素。当你在测试一个Web
应用的登录页面时,AI
代理能够快速识别页面上的输入框、按钮等元素,并模拟用户操作,如输入用户名和密码,点击登录按钮,同时分析操作后的页面响应,判断登录功能是否正常。这就像有一个智能助手在帮你进行测试,而且它对页面元素的理解和操作能力非常精准。
当测试过程中出现故障时,BrowserTools MCP
的故障复现增强功能会自动记录操作上下文。它不仅会记录你在页面上的点击、输入等操作步骤,还会保存当时的页面状态、相关的请求和响应数据等信息。比如,在测试一个在线支付功能时,如果出现支付失败的情况,BrowserTools MCP
会完整记录下从你选择支付方式、输入支付密码到提交支付请求的整个过程,以及相关的网络请求和页面反馈,方便开发人员快速定位问题根源。
BrowserTools MCP 部署全流程
理论讲得再多,不如实际操作一遍来得实在。下面糖糖就详细给大家讲讲如何部署BrowserTools MCP
,让你也能轻松享受它带来的便利。
环境准备
在开始部署之前,我们得先把基础环境搭建好。首先,确保你的电脑上已经安装了Node.js
和npm
。Node.js
是一个基于Chrome V8
引擎的JavaScript
运行时环境,而npm
是Node.js
的包管理器,它们就像是我们搭建房子的基石和工具。如果你还没有安装,可以去官网下载对应系统的安装包,按照提示一步步安装即可。安装完成后,在命令行中输入node -v
和npm -v
,如果能看到相应的版本号,那就说明安装成功啦。
当前糖糖的
node
版本为23.1.1
,npm
版本为6.14.12
,建议最新,不然会有很多莫名奇妙的报错!
BrowserTools MCP 配置
环境准备好后,接下来就是浏览器的配置了。这一步非常关键,它关系到BrowserTools MCP
能否正常捕获浏览器数据。
1.安装 BrowserTools 扩展
克隆项目,打开终端,使用Git
克隆项目到本地
git clone https://github.com/AgentDeskAI/browser-tools-mcp.git
克隆完成后,打开Chrome
浏览器进入扩展程序管理页面。打开右上角的 “开发者模式” 开关,点击 “加载已解压的扩展程序”,选择browser-tools-mcp/chrome-extension
文件夹,这样BrowserTools
扩展就安装成功了。安装完成后,你会在浏览器右上角看到一个BrowserTools
的图标,点击它可以打开扩展界面。
2.启动 Browser Tools Server
npx @agentdeskai/browser-tools-server@latest
3.启动 MCP Server
npx @agentdeskai/browser-tools-mcp@latest
4.配置Chrome户端
打开Chrome
,点击F12
,点击 “Test Connection” 按钮,如果显示 “Connection Successful”,那就说明配置成功啦。
5.配置 Cursor 客户端
举个简单的例子
我们来写一个简单的HTML
,并故意将HTML
中的某个方法写错,浏览器打开之后,在Cursor
中询问具体的问题,并让给出具体的解决办法,如下图所示
测试革命:MCP 重构工作流
BrowserTools MCP
在实际测试工作中的应用,真正实现了测试工作流的重构,让测试变得更加高效、智能。下面我就从智能故障诊断、自动化测试增强和性能测试创新这三个方面,给大家详细讲讲它是如何发挥作用的。
智能故障诊断
在传统的测试过程中,遇到页面加载异常或者功能无法正常使用的问题时,我们往往需要手动去排查各种可能的原因,这不仅耗费时间,还容易遗漏关键信息。而BrowserTools MCP
的智能故障诊断功能,就像是给我们配备了一个专业的技术顾问,能够快速、准确地帮我们定位问题。
比如,当我们在测试一个电商网站的商品详情页时,发现页面加载异常,图片无法显示。这时,我们只需在Cursor
中输入指令:“分析当前页面加载异常,检查网络请求和JS
错误”。Cursor
会通过MCP
服务器将指令发送给BrowserTools MCP
,BrowserTools MCP
的AI
代理就会立刻行动起来。它首先自动抓取浏览器控制台日志,查看是否有相关的错误信息。然后,深入分析XHR
响应,检查网络请求是否正常,有没有出现请求超时或者返回错误状态码的情况。最后,综合这些信息,生成一份详细的诊断报告。报告中会明确指出问题的根源,比如可能是某个JS
文件加载失败,导致图片无法正常渲染,或者是网络请求被防火墙拦截,无法获取图片资源。有了这份报告,开发人员就能迅速定位问题,进行修复,大大提高了问题解决的效率。
自动化测试增强
自动化测试是提高测试效率的重要手段,但传统的自动化测试工具往往存在一些局限性,比如测试用例的编写需要耗费大量时间和精力,而且对于一些复杂的页面结构和动态变化的元素,很难生成有效的测试用例。BrowserTools MCP
在自动化测试方面进行了全面升级,为我们带来了全新的体验。
1.动态断言生成
BrowserTools MCP
能够根据DOM
结构自动生成测试用例。在测试一个Web
应用的登录页面时,它会自动识别页面上的输入框、按钮等元素,以及它们之间的关系。然后,根据这些信息,生成相应的测试用例,比如输入正确的用户名和密码,点击登录按钮,验证是否能够成功登录;输入错误的密码,验证是否会提示错误信息等。这种动态断言生成功能,大大减少了我们手动编写测试用例的工作量,而且生成的测试用例更加全面、准确,能够覆盖更多的测试场景。
2.异常场景复现
在测试过程中,偶现的异常问题一直是我们的心头大患。BrowserTools MCP
的异常场景复现功能,让这个问题迎刃而解。当出现异常情况时,我们只需点击一下按钮,它就能一键保存完整的上下文信息,包括当时的页面状态、用户操作步骤、网络请求和响应数据等。这些信息就像一个时间胶囊,完整地记录了异常发生时的所有细节。开发人员拿到这些信息后,就可以在自己的环境中轻松复现问题,进行深入分析和调试,大大缩短了问题排查的时间。
性能测试创新
性能测试是衡量应用质量的重要指标之一,它直接影响用户的使用体验。BrowserTools MCP
在性能测试方面也进行了创新,为我们提供了更加全面、深入的性能分析工具。
1.实时资源监控
BrowserTools MCP
能够实时监控应用在运行过程中的资源使用情况,包括内存占用、CPU
使用率等,并将这些数据与用户的操作步骤关联起来。在测试一个在线游戏时,我们可以看到玩家在进行不同操作,如角色移动、技能释放、场景切换时,内存占用和CPU
使用率的变化情况。通过这种实时监控,我们可以快速发现性能瓶颈所在,比如某个技能释放时,内存占用突然飙升,导致游戏卡顿,这样我们就能针对性地进行优化,提高游戏的性能。
2.AI 优化建议
基于实时监控得到的性能数据,BrowserTools MCP
的AI
还能自动生成优化方案。它会分析性能数据,找出导致性能问题的原因,然后给出具体的优化建议。如果发现某个页面的加载时间过长,AI
可能会建议优化图片的大小和格式,减少HTTP
请求次数,或者优化服务器端的代码逻辑,提高数据处理速度。这些优化建议都是基于AI
的智能分析得出的,具有很强的针对性和实用性,能够帮助我们快速提升应用的性能。
总结:MCP 生态的进化方向
BrowserTools MCP
的出现,只是软件测试领域变革的开始。 它不仅解决了传统测试中的诸多痛点,还为未来的发展开辟了广阔的空间。如果你还在为前端测试的效率和质量而烦恼,不妨立即体验BrowserTools MCP
,亲身感受它的强大功能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。