MCP 介绍
MCP是一种模型上下文协议,主要是用来将各类大模型调用外部工具的接口进行统一,在实现AI Agent的过程中需要几个重要的步骤,其中最重要的就是通过大模型语言调用外部的工具将智能体联动起来。在没有MCP之前调用外部工具多数使用Open AI 的Function call方案,
OpenAI
12345678910111213{ "index": 0, "message": { "role": "assistant", "content": null, "tool_calls": [ { "name": "get_current_stock_price", "arguments": "{\n \"company\": \"AAPL\",\n \"format\": \"USD\"\n}" } ] }, "finish_reason": "tool_calls"
Claude
1415161718192021222324252627{ "role": "assistant", "content": [ { "type": "text", "text": "To answer this question, I will: …" }, { "type": "tool_use", "id": "1xqaf90qw9g0", "name": "get_current_stock_price", "input": {"company": "AAPL", "format": "USD"} } ]
Gemini
2829303132333435{ "functionCall": { "name": "get_current_stock_price", "args": { "company": "AAPL", "format": "USD" } }
LLaMA
36373839404142434445{ "role": "assistant", "content": null, "function_call": { "name": "get_current_stock_price", "arguments": { "company": "AAPL", "format": "USD" } }
例如大模型想获取"苹果公司股票价格",需要调用外部工具(函数:get_current_stock_price)获取,但是上面四个大模型厂商Function call接口都不同,造成调用外部工具时就会比较混乱,不同的模型和不同工具都要开发相应接口,甚至外部函数的逻辑都有可能不用需要单独处理,代码量增大。看起来就像下图左边这样。
MCP的出现定义了统一的标准,实现在不同的模型及外部应用之间采用统一的接口,确保了在不同的模型及外部应用之间切换,具有很好的灵活性和扩展性。
MCP Host/MCP Client : 要通过MCP访问数据库应用客户端程序,当前支持的有:Claude、Cline、Cursor等,在这里可以看到完整的列表和支持情况:https://modelcontextprotocol.io/clients
MCP Server : 通过MCP协议连通外部工具实现具体的功能,当前已有的MCP Server已有很多:https://github.com/modelcontextprotocol/servers
工作流程是:
- 当用户在MCP Client中输入信息后,MCP Client会将用户输入信息和当前已存在的MCP Server信息发送给大模型,MCP Server信息会放到系统提示词中,包括了有哪些MCP Server、函数能力、使用方式、参数信息
- 大模型返回给MCP Client并告知需要调用对应MCP Server中的哪个函数
- 调用对应MCP Server中的函数
- 将输出返回给大模型,大模型根据返回信息进行整理返回给用户
可见第一步是比较关键,将MCP Server作为提示词告知大模型如何使用已有这些外部工具函数。
MySQL MCP Server尝试
社区中有很多开源的MCP Server,这里就拿MySQL作为一次尝试,MCP Client使用Cline。
部署步骤:
- 安装VScode及Cline插件并配置DeepSeek API
- 下载MySQL MCP Server
464748495051525354555657 # Clone the repositorygit clone https://github.com/designcomputer/mysql_mcp_server.gitcd mysql_mcp_server# Create virtual environmentpython -m venv venvsource venv/bin/activate # or `venv\Scripts\activate` on Windows# Install development dependenciespip install -r requirements-dev.txt# Run tests
- 在Cline配置MCP Server及MySQL连接信息
58596061626364656667686970717273747576{ "mcpServers": { "mysql": { "command": "uv", "args": [ "--directory", "path/to/mysql_mcp_server", "run", "mysql_mcp_server" ], "env": { "MYSQL_HOST": "localhost", "MYSQL_PORT": "3306", "MYSQL_USER": "your_username", "MYSQL_PASSWORD": "your_password", "MYSQL_DATABASE": "your_database" } } }
-
在Cline中针输入一些自然语言通过大模型和MCP Server结合完成对数据库的操作,测试几个针对MySQL的问题和操作,下面是测试的几个问题都可以正常完成:
-
- 数据库中有多少表?
- sbtest1表上的索引及索引选择性?
- 当前数据库有多少连接?
- 创建一张订单表,字段名用英文,comment中文
- 返回订单表的表结构
- 向订单表中插入100条测试数据
- 数据库中有多少表?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。