5分钟带你用PyTorch和TensorFlow实现神经网络

之前我们讨论过用于预测冰淇淋收入的简单神经网络,现在让我们使用TensorFlow和PyTorch这两个强大的神经网络构建工具来实现它。

而且TensorFlow只需要27行代码,就能在5分钟内完成这一任务!

首先,让我们从了解TensorFlow开始:

TensorFlow是一个包含工具、库和社区资源的全面生态系统,用于构建和部署机器学习应用。

它由谷歌开发,是一个灵活又高效的工具,能够在从CPU到GPU,甚至包括TPU等专用硬件在内的各种平台上运行。

其名称“TensorFlow”源自其核心概念:张量流,在训练和推理过程中,张量(多维数组)通过计算图流动。

现在让我们开始构建神经网络,该模型的目标是基于两个特征——温度和星期几——来预测每天冰淇淋的收入。

我们将逐步进行,详细解释过程中的每个组件。

这篇文章只是构建神经网络的简单演示,要是大家想深入学习神经网络,我也为大家准备了神经学习资料,从基础知识到从零构建自己的神经网络都包含在内。

第一步:数据准备

首先,我们需要处理之前使用的冰淇淋销售数据……

转化为适合我们神经网络的格式:

import numpy as np  ``# 数据`  `day = [2, 6, 1, 3, 2, 5, 7, 4, 3, 1]  # 天数`  `temperature = [22, 33, 20, 25, 24, 30, 35, 28, 26, 21]  # 温度`  `revenue = [1.51, 2.22, 1.37, 1.77, 1.64, 2.04, 2.42, 1.90, 1.75, 1.45]  # 销售额  ``# 将天数和温度组合成单个特征数组`  `X_train = np.column_stack((day, temperature))  # 训练集特征数组`  `y_train = np.array(revenue)  # 训练集目标数组(销售额)

这样,我们就创建了输入特征X_train

以及目标值y_train:

第二步:数据标准化

接下来,我们将对数据进行标准化处理。

标准化是一个至关重要的预处理步骤,它将特征转换为均值为0,标准差为1的形式。

from sklearn.preprocessing import StandardScaler  ``# 对特征进行标准化处理`  `scaler = StandardScaler()  # 创建StandardScaler对象`  `X_train_scaled = scaler.fit_transform(X_train)  # 使用训练集数据拟合标准化器,并应用转换到X_train上,得到标准化后的训练集特征

这样做可以确保所有特征对模型的贡献是平等的,从而提高训练过程中的收敛速度和稳定性。

第三步:构建神经网络

在这一步中,我们定义神经网络模型。

之前已经决定,该模型架构包含一个隐藏层,该层有两个神经元,以及一个使用ReLU激活函数的输出神经元。

我们继续使用这一架构,并将其转化为代码,我们将利用TensorFlow的Keras API来构建神经网络。

from tensorflow.keras.models import Sequential``from tensorflow.keras.layers import Dense``   ``# 初始化模型``model = Sequential()``   ``#添加隐藏层 - 2个神经元,使用ReLU激活函数,输入层有2个输入`  `model.add(Dense(2, input_dim=2, activation='relu'))``   ``# Add output layer - 1 neuron with the ReLU activation function``model.add(Dense(1, activation='relu'))

Sequential模型允许我们堆叠多个层,Dense层是全连接层,即当前层的每个神经元都与下一层的每个神经元相连。

第四步:编译和训练模型

在训练之前,我们需要先编译模型:

`python``# 编译模型,指定优化器为adam,损失函数为均方误差`  `model.compile(optimizer='adam', loss='mean_squared_error')``   `‍

编译是配置学习过程的关键步骤,在这一步中,我们需要指定:

优化器:Adam(自适应矩估计),它在训练过程中自适应地调整学习率。
损失函数:均方误差(MSE),用于衡量预测值与实际值之间平均平方差的大小。
注意:虽然这里我们使用了Adam优化器,但也可以根据具体情况选择其他合适的优化算法。TensorFlow支持多种优化算法,同样地,我们也可以从定义的各种损失函数中选择最适合当前任务的。

接下来,我们可以开始训练模型:

`# 训练模型,使用标准化后的训练集特征X_train_scaled和训练集目标y_train,设置迭代轮次为100,并开启详细输出模式`  `history = model.fit(X_train_scaled, y_train, epochs=100, verbose=1)`‍

fit方法是实际进行学习的地方。在这里,我们指定输入特征(X_train_scaled)、目标值(y_train)以及训练周期数(epochs)。verbose参数控制训练过程中的输出详细程度。

为了更直观地了解训练过程,我们可以进行可视化:

import matplotlib.pyplot as plt`    `# 绘制训练过程中每个轮次的损失值`  `plt.plot(history.history['loss'])  # history.history['loss'] 存储了每个epoch结束时的损失值`  `plt.title('模型训练损失')  # 图表标题`  `plt.xlabel('轮次')  # x轴标签,表示训练的轮次`  `plt.ylabel('损失')  # y轴标签,表示损失值`  `plt.show()  # 显示图表

这个图表展示了随着时间的推移,我们的损失(预测误差)如何逐渐降低,为我们提供了学习过程的直观洞察。

第五步:进行预测

最后,我们可以使用训练好的模型进行预测:

from sklearn.metrics import mean_squared_error  ``# 在训练数据上进行预测`  `predictions = model.predict(X_train_scaled)  # 使用训练好的模型对标准化后的训练数据进行预测`  `print("训练数据上的预测销售额:", predictions)  # 打印出预测结果

在这里,我们利用训练好的模型,根据输入特征来预测冰淇淋的销售量。如果我们想评估预测的准确性,可以使用MSE来衡量模型的精度。

`# 计算均方误差`  `mse = mean_squared_error(y_train, predictions)  # 使用真实值和预测值计算均方误差`  `print("训练数据上的均方误差:", mse)  # 打印出训练数据上的均方误差值`‍

尽管MSE的值没有达到我们的预期,但这没关系,因为这只是一个非常基础的神经网络,我们的目标是通过增加复杂性和调整架构来改进结果。

虽然本例使用了简单的数据集和模型架构,但我们所介绍的原则为更复杂的神经网络应用奠定了基础。

随着我们在深度学习领域的深入探索,将会遇到更高级的架构和更大的数据集,但基本流程却是保持不变的。

这篇文章只是构建神经网络的简单演示,要是大家想深入学习神经网络,我也为大家准备了神经学习资料,从基础知识到从零构建自己的神经网络都包含在内。

PyTorch

既然我们已经了解了如何在TensorFlow中实现模型,接下来让我们看看如何使用另一个强大的框架——PyTorch,来达到同样的效果。

PyTorch由Facebook的人工智能研究实验室开发,以其灵活性和高效性著称,因此也成为了众多开发者的热门选择。

# 导入必要的库`  `import numpy as np`  `import torch`  `import torch.nn as nn`  `import torch.optim as optim`  `from sklearn.preprocessing import StandardScaler`  `import matplotlib.pyplot as plt  ``# 数据`  `day = [2, 6, 1, 3, 2, 5, 7, 4, 3, 1]`  `temperature = [22, 33, 20, 25, 24, 30, 35, 28, 26, 21]`  `revenue = [1.51, 2.22, 1.37, 1.77, 1.64, 2.04, 2.42, 1.90, 1.75, 1.45]  ``# 转换为numpy数组`  `X = np.array(list(zip(day, temperature)), dtype=np.float32)`  `y = np.array(revenue, dtype=np.float32)  ``# 特征标准化`  `scaler = StandardScaler()`  `X_scaled = scaler.fit_transform(X)  ``# 将数据转换为PyTorch张量`  `X_tensor = torch.tensor(X_scaled, dtype=torch.float32)`  `y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)  ``# 构建神经网络`  `class IceCreamSalesModel(nn.Module):  ``     def __init__(self):   ``         super(IceCreamSalesModel, self).__init__()   ``         self.hidden = nn.Linear(2, 2)  # 第一个线性层,输入特征2个,输出特征2个   ``         self.output = nn.Linear(2, 1)  # 第二个线性层,输入特征2个(来自隐藏层),输出特征1个(预测值)   ``         self.relu = nn.ReLU()  # 激活函数   ``     def forward(self, x):   ``         x = self.relu(self.hidden(x))  # 前向传播,先通过隐藏层,再应用ReLU激活函数   ``         x = self.output(x)  # 再通过输出层   ``         return x   ``model = IceCreamSalesModel()  ``# 定义损失函数和优化器`  `criterion = nn.MSELoss()  # 均方误差损失函数`  `optimizer = optim.Adam(model.parameters(), lr=0.01)  # Adam优化器,学习率设置为0.01  ``# 训练模型`  `num_epochs = 100`  `losses = []  ``for epoch in range(num_epochs):  ``     # 前向传播   ``     predictions = model(X_tensor)   ``     loss = criterion(predictions, y_tensor)   ``     losses.append(loss.item())   ``     # 反向传播和优化   ``     optimizer.zero_grad()  # 清除梯度   ``     loss.backward()  # 反向传播   ``     optimizer.step()  # 更新权重   ``# 绘制训练损失`  `plt.plot(losses)`  `plt.xlabel('Epochs')  # 横坐标:训练轮次`  `plt.ylabel('Loss')  # 纵坐标:损失值`  `plt.title('Training Loss')  # 图表标题:训练损失`  `plt.show()  ``# 进行预测`  `with torch.no_grad():  # 关闭梯度计算,加快预测速度  ``predictions = model(X_tensor)`  `print("预测收入:", predictions.numpy())  ``# 评估模型`  `mse_value = criterion(predictions, y_tensor).item()`  `print("均方误差:", mse_value)

到这里我们已经学习了如何使用TensorFlow和PyTorch来实现一个简单的神经网络,来预测冰淇淋销量。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值