V-STaR: Training Verifiers for Self-Taught Reasoners是发表在COLM 2024的关于提升LLM推理能力的一篇论文,我们之前读过STaR以及后续改进工作Quiet-STaR,本文同样是对STaR进行改进,STaR利用few-shot CoT prompt让LLM生成solution(rationale/thought)和final answer,然后将final answer错误的solution数据丢弃,只用correct solution来fine-tuning LLM,但是correct solution数量往往很少,所以STaR作者提出了rationalization方法扩充微调数据集,效果挺明显的。本文作者认为错误的solution数据丢掉太可惜了,它们同样包含有用信息,需要利用起来,让LLM从错误中也可以学习。怎么利用呢?想到用correct和wrong的solution数据+DPO训练verifier模型,然后在LLM inference阶段每次sample多个solution,用verifier挑选top1输出。
这就是V-STaR = Verifier + STaR.
V-STaR
想提升LLM推理(reasoning/thinking)能力,有这么几类方法:
-
用人工标注的数据集fine-tuning,比如用gsm8k训练集对LLM sft,因为的中含有rationale和answer,这样得到的LLM就可以生成rationale了
-
few-shot/zero-shot CoT prompt
-
以STaR为典型的self-improvement + iterative方法,LLM自己生成rationale然后fine-tuning,这个过程不断迭代
-
verifier,这是OpenAI比较喜欢用的方法,如果整个推理提升的流程不涉及RL,可以把verifier看作推荐系统/搜索引擎领域的ranker,简单来说,LLM会sample多个rationale,然后verifer对他们排序选择top1作为输出,如果推理流程中包含了RL,那么verifer就相当于reward model
-
…
本文结合了verifier和STaR。
下面是完整的训练流程:
generator指的就是要提升推理能力的LLM,verifier结构同generator,只不过多了一个linear head用于预测score。如果我要提升Llama-3.1-8B在gsm8k的推理能力,那么它就是,gsm8k的训练集就是,第一步就是做sft得到模型。让训练generator的数据集,训练verifier的数据集接下来进入迭代过程,每一次迭代:
-
当前的generator 对训练集每个采样个
-
对采样的标注正确or错误的标签,筛选出的正确数据,添加到,将所有采样的数据以及正误标签数据添加到。这里是添加,因此和越来越大,和STaR不同,STaR只用当前迭代的数据训练模型
-
在上sft得到新的generator
当迭代结束后,才训练verifier。也就是说,verifier只训练一次,作者做了实验每次迭代都训练verifier,发现起码所用的数据集上面没有提升,那就减少计算量只训练一次verifier。
重点看下STaR和V-STaR数据集的区别:
如何训练verifier?OpenAI给出的方式是多任务:同时做next token prediction和reward(是否正确)预测。作者认为如果把正确的solution看作prefered,那么verifier不就是在做preference learning吗?可以用DPO训练,注意是对训练,这样和RLHF/DPO做alignment的流程一致了:LLM pre-training --> sft --> RLHF/DPO。
实验效果是很哇塞的:
并且用DPO训练verifier要比传统多任务得到的verifier (outcome-supervised reward model, ORM)还要好:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。