本期导读
随着人工智能生成内容(AIGC)技术的不断发展,如何从大脑信号中生成多模态的感知体验成为了脑机接口(BCI)研究中的热门课题。脑信号多模态生成是一种通过解码大脑信号,生成视觉、音频、文本等多感知模态的创新技术,它不仅能够帮助我们理解人类如何感知世界,还为未来的虚拟现实、神经假肢和辅助沟通设备提供了广阔的应用前景。
本期文章将深入探讨“基于脑信号的多模态生成”的研究现状、关键技术和应用场景,带您了解这一前沿技术如何通过人工智能模型解码大脑信号,从而生成高度逼真的感知内容,并为脑机接口系统带来革命性的突破。
第1节 脑信号多模态生成的背景与挑战
脑机接口(BCI)通过捕捉和解码大脑活动,向外部设备传递用户的意图,从而实现人机互动。随着科技的进步,BCI逐渐从单一的“控制”任务(如用大脑控制机械手臂)转向更复杂的感知生成任务——即根据大脑信号生成多模态内容。
脑信号多模态生成技术的核心是从大脑信号中提取人类对外界感知的内容,并通过深度学习生成相应的视觉、音频或文本。这一技术的挑战在于,大脑信号高度复杂,难以直接转换为可感知的模态信息。因此,需要将脑信号与视觉、听觉等模态信息之间的映射关系建模,从而解码出更具可解释性的感知内容。
举例来说,当一个人看到某个物体时,大脑会对该视觉刺激产生电活动。如果能成功解码这一过程,我们便可以通过生成技术再现该人眼中的图像,甚至是该图像的声音或其他相关信息。这种技术不仅能帮助我们更好地理解大脑如何处理感知信息,也为脑机接口技术带来了全新的应用场景。
图1:基于AIGC-大脑解码器的脑信号多模态生成
1. 脑信号的获取与解码技术
在脑信号多模态生成中,最常用的脑信号获取技术是脑电图(EEG)和功能性磁共振成像(fMRI)。EEG通过在头皮上放置电极捕捉大脑的电活动,具有较高的时间分辨率,能够实时记录大脑对外界刺激的反应;而fMRI则通过检测血液中的氧气水平,间接反映大脑的神经活动,具有较高的空间分辨率。
然而,脑信号的复杂性和噪声干扰使得解码过程极具挑战。脑信号是多维且非线性的,它不仅反映当前的感知信息,还包含情绪、记忆等其他干扰因素。因此,如何从脑信号中分离出与外界感知相关的部分成为了研究的重点。
图2:EEG 10-10通道系统与大脑区域
第2节 AIGC在脑信号多模态生成中的应用
在人工智能生成内容(AIGC)的推动下,脑信号多模态生成已经取得了显著进展。AIGC技术的核心在于使用深度学习模型来生成高度逼真的视觉、音频和文本,而当其与脑信号解码结合时,能够产生非常强大的感知生成能力。
图3: 用于AIGC-大脑任务的不同类型的方法。
以视觉生成为例,研究人员首先通过神经网络模型将大脑信号解码为低维的视觉特征,然后使用生成对抗网络(GAN)将这些特征转换为具体的图像或视频。类似的,音频生成则可以通过音频转换模型将脑信号映射为声音信号,进而再现用户听到的声音。这种从脑信号到感知内容的生成过程,为脑机接口的应用提供了无限的可能。
图4:用于AIGC-大脑任务的不同类型的方法
第3节 脑信号多模态生成的实际应用
脑信号多模态生成技术的应用前景十分广阔,尤其是在医疗、虚拟现实(VR)、增强现实(AR)和通信等领域,具有极大的潜力。
(1)医疗领域:对于无法正常表达语言的患者,脑信号多模态生成可以通过解码患者的脑信号,生成相应的文本或语音,帮助他们与外界沟通。这一技术对于渐冻症等重度神经疾病患者具有极大的帮助,可以大幅提升他们的生活质量。
(2)神经假肢:通过脑机接口技术,脑信号生成的多模态内容可以帮助残疾人控制假肢或其他设备。研究人员可以通过解码用户的运动想象信号,生成手部的实际动作,帮助他们恢复部分运动功能。
(3)虚拟现实与增强现实:脑信号多模态生成可以为虚拟现实(VR)和增强现实(AR)创造更加沉浸式的体验。例如,VR系统可以解码用户的大脑信号,从而生成更加个性化的虚拟环境,进一步增强用户的互动感。
(4)辅助技术:对于视听障碍人群,脑信号多模态生成技术可以通过解码大脑信号,将他们的感知体验转换为其他模态的信息,从而帮助他们更好地感知和理解周围的世界。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。