LLM每周速递!学术最前沿:大模型应用/微调、RAG应用/优化、CoT优化、多模态等

引言

紧跟技术发展趋势,快速了解大模型最新动态。今天继续总结最近一周的研究动态,本片文章共计梳理了10篇有关大模型(LLMs)的最新研究进展,其中主要包括:构建工作流实现大模型在游戏博弈中的应用、CoT任务推理优化、大模型多任务大模型微调扩展LLM上下文实现图像中的应用、RAG系统能力提升应、大模型在金融领域应用等等热门研究。

大模型在博弈论应用

本文作者深入探讨了大型语言模型(LLMs)在战略决策,尤其是博弈论中的合理性。研究发现,LLMs在复杂游戏中常常不遵循理性策略。为了提高它们的理性,本文设计了一些博弈论工作流程来指导LLMs的推理和决策,帮助它们即使在信息不完全的情况下也能做出理性选择。在这里插入图片描述
实验结果表明,采用这些工作流程显著提高了LLMs在博弈论任务中的合理性和鲁棒性。具体来说,使用工作流程后,LLMs在识别最优策略、在谈判场景中实现近优分配以及减少在谈判中被利用的倾向方面都有显著改进。

蚂蚁 | 多任务LLM微调

https://arxiv.org/pdf/2410.06741

多任务学习(MTL)旨在让模型经过一个训练过程中,让模型具备处理多种任务的能力。简单来说,MTL能够在不同任务之间共享信息,有效提高模型的泛化能力和数据效率。多任务学习的关键主要体现在参数共享、联合损失函数、权重调整等方面。当前将大模型作为骨干模型,进行多任务学习,是高效利用大模型能力一种方法。但是现有的MTL策略在LLMs微调过程中,「会存在两个问题:1)计算资源要求高;2)无法保证多任务的同时收敛」

为此,今天给大家分享的这篇文章,为了解决这两个问题,「提出了一种新型MTL方法:CoBa」,即在训练过程CoBa可以动态地调整任务权重,促进各任务收敛平衡,降低了计算资源要求;结果表明:该方法可以让LLMs的性能最高提升13%。

Meta|RAG提升TTA能力

在这里插入图片描述
https://arxiv.org/pdf/2411.05141

文本到音频(Text-To-Audio, TTA)生成模型在零样本和少样本场景中表现较差,尤其在生成训练集中未见或不常见的音频事件时,难以生成高质量音频。受检索增强生成(Retrieval-Augmented Generation, RAG)在大型语言模型(LLM)知识密集型任务中成功应用的启发,本文在TTA过程中引入了额外的条件上下文,提出了一种名为Audiobox TTA-RAG的新型检索增强TTA方法,相比传统仅依赖文本的生成方式,该方法通过检索音频样本作为额外条件,提供更多声学信息,生成更高质量的音频。

北海道|LLMs金融领域应用

https://arxiv.org/pdf/2411.09249

本文主要探讨了大型语言模型(LLMs)在**「金融领域的适应性」,并发现“组合增强语言模型”(CALM)能有效提升LLMs在金融任务中的表现。「CALM通过两个不同功能的LLMs间的交叉注意力机制增强模型能力」**。实验中,CALM利用一个金融专业LLM,提高了另一个LLM的金融性能,并且能够适应不同的金融数据集。评估结果显示,CALM在日语金融基准测试中得分高于原始模型,且连接模型中间层对适应金融领域最有效。这证实了CALM是适应LLMs到金融领域的实用方法。

RAG时间序列预测应用

https://arxiv.org/pdf/2411.08249

检索增强生成(RAG)是现代大型语言模型(LLM)系统中的核心组件,尤其在需要最新信息以准确响应用户请求的场景中显得尤为重要。随着时间序列基础模型(TSFM)如Chronos的出现,以及在各个时间序列领域实现有效的零样本预测的需求。本文探讨了RAG在时间序列预测(TSFM)中的应用,并提出了一个名为「检索增强预测(RAF)的新框架。RAF通过检索相关的时间序列数据来提高预测准确性」,实验表明,RAF在多个时间序列领域都有效,尤其是对于较大的TSFM模型,效果更为明显。

哈工大 | 大模型CoT任务推理优化

https://arxiv.org/pdf/2410.05695

链式思维(Chain-of-Thought,CoT)推理作为一种提升大型语言模型(LLMs)复杂推理任务性能的方法,近期受到了广泛关注。然而,现有研究在量化CoT能力和优化CoT表现方面存在挑战。为此,本文研究提出了一个推理边界(RB)框架,系统量化并优化大语言模型(LLMs)在思维链(CoT)任务中的推理能力边界。通过定义推理边界和应用优化策略,合理解释了多个 CoT 策略其在推理性能上的优势。同时,最短可接受推理路径(MARP)策略通过减少不必要的推理步骤,显著提高了不同任务中的推理性能与效率。

混合Transformer-MAMBA模型

https://arxiv.org/pdf/2411.08840

处理长文本上下文对于提升多模态大型语言模型(MLLMs)在高分辨率图像处理或高帧率视频分析等应用中的识别和理解能力至关重要。但高分辨率和高帧率会增加计算负担,尤其是自注意力机制的复杂度随序列长度呈二次方增长。以往的方法要么牺牲效率预训练长上下文模型,要么通过下采样减少信息量。

本文作者提出了一种**「新的混合Transformer-MAMBA模型,能有效处理长上下文,且在多模态应用中表现优于现有模型」**。这个模型在处理高分辨率图像和视频时推理效率提高了4倍,且随着分辨率和帧率的提高,效率提升更明显。更重要的是,这个模型能在低分辨率视频上训练,然后用于高分辨率视频的推理,增加了应用的灵活性。

UIUC | ERRR提升RAG性能

https://arxiv.org/pdf/2411.07820v1

大模型就像一个“历史信息快照”,无法及时更新信息是它的短板。而RAG技术可以将外部知识通过上下文学习引入大模型生成过程中,从而让LLMs生成更符合预期。但RAG存在一个关键问题:「用户query和实际生成最佳answer所需信息之间往往存在差距」为此,本文作者在“重写-检索-读取”(RRR)框架的基础上,提出了“提取-精炼-检索-读取”框架:ERRR,旨在缩小LLM的预检索信息差距,通过query优化更好地满足模型的知识需求,进而生成准确的回答。

CMU| 文生图优化

在这里插入图片描述
https://arxiv.org/pdf/2404.01291

AIGC技术发展迅速,模型如Midjourney、Imagen3等能根据文本提示生成图像,但处理复杂提示时存在不足。为更好的评估此类模型的能力,进而提升模型性能。本文作者提出了VQAScore评估指标及GenAI-Bench基准,自动评估图像、视频和3D模型在复杂提示下的表现。VQAScore通过视觉问答模型评估图像与文本提示的对齐程度,自动化评估无需人工评分,提高评估准确性。GenAI-Bench提供复杂文本提示基准测试集,挑战和提升现有模型。这些工具帮助研究人员识别模型局限,指导模型改进。

夏大 |降低LLM训练成本

https://arxiv.org/pdf/2410.04103

大语言模型(LLMs)需要定期更新以适应新数据,更新方式主要有两种:从头开始训练(PTFS)和持续预训练(CPT)。PTFS训练效果好,但成本高;CPT成本低,但效果稍逊,且两者差距随版本更新而增大。

本文作者研究CPT中学习率调整的影响,发现在CPT的两个阶段中,第一阶段使用大学习率和第二阶段学习率完全衰减对LLMs更新很关键。因此,提出了**「一种新的学习率路径切换训练范式」**,包括一个主路径和多个分支路径,分别用于LLMs的最大学习率预训练和新数据更新。实验证明,这种范式在保持训练效果的同时,能大幅降低训练成本,尤其是在训练多个版本的LLMs时。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值