企业RAG构建中,如何用“行级别权限管控”避免数据泄露

01.背景介绍

在现代数据管理中,如何高效地进行权限控制是企业面临的一个重要挑战。尤其在涉及多个部门和角色的场景下,确保数据的安全性和访问的便捷性变得尤为关键,基于此 Milvus 提供了 RBAC(Role-Based Access Control )功能。然而,一些关键行业却对数据的权限异常敏感且有着实际的应用场景,譬如:

在医疗行业中,医院和医疗机构需要保护患者的隐私,同时又需要在专业人员之间共享必要的信息。例如,一位医生可能需要访问其患者的完整医疗记录,以提供准确的诊断和治疗方案。但这位医生不应有权限查看非其负责患者的医疗信息。通过行级别权限管理,向量数据库可以精确地控制每个数据行的访问权限,确保只有被授权的医疗人员才能访问特定患者的数据。这种精细的权限控制有助于遵守医疗行业的法规,满足 HIPAA 的合规要求。

金融行业同样需要严格的权限管理。银行和金融机构处理着客户的财务数据,包括账户信息、交易记录和信用评分等。这些数据被转换为向量,用于风险评估、欺诈检测和个性化服务。然而,如果这些敏感数据被内部人员滥用或泄露,可能会导致严重的财务损失和法律后果。通过行级别权限管理,金融机构可以确保只有特定的员工,例如负责某一客户的客户经理,才能访问对应的数据。风险控制部门可能需要查看更广泛的数据以进行分析,但他们的访问也应受到监控和限制,以防止数据滥用。

基于这种细粒度权限管控的需求,本篇文章将介绍一种基于角色和权限的控制机制,该机制采用位图索引来管理数据表中行级别的访问权限,使得权限控制更为精细化和高效。这种方法不仅能够高效处理大规模数据的权限查询,还能灵活应对权限的更新操作。文章将从角色与权限的定义、位图的构建与使用、以及如何在实际场景中实现和应用这些概念等方面进行详细阐述。同时,我们还将通过 Milvus 的具体功能演示,展示如何在企业知识管理系统中利用这一机制来实现部门级的精细化权限控制。

02.基本原理

2.1 角色和权限的定义

  • 角色(Role): 定义用户在系统中的角色,每个角色对应一组权限。

  • 权限(Permission): 定义在数据表中对某些行的访问权限(如读取、写入、删除等)。

2.2 位图索引的构建

  • 每个角色都会有一个位图来表示其可以访问的数据行。

  • 位图的长度与数据表的行数相等,每一位代表一行,如果该位为 1,则表示该角色对该行有访问权限,为 0 则表示没有访问权限。

2.3 位图的使用

  • 权限赋予: 当给一个角色赋予某行的权限时,将该角色的对应位图中该行的位置置为 1。

  • 权限判断: 判断某个角色对某行是否有权限时,只需检查该行对应的位图位是否为 1。

2.4 示例

假设有一张表 Collection A 用于存放企业知识,不同的知识内容用 doc_id 标识,其所属的知识库用 kb_id 标识。

在这里插入图片描述

定义两个角色:

  • Role 1:可以访问第 1、2、3、 4 行数据,即 kb_id = 1 的内容。

  • Role 2:可以访问第 5 行数据,即 kb_id = 2 的内容。

2.5 查询操作

当用户需要查询某些数据时,可以通过角色的位图与查询条件组合来快速筛选出用户有权限访问的行。例如,用户属于 Role 1,当查询“所有数据”时,通过位图 11110 筛选出 Data A, Data B, Data C, 和 Data D。

2.6 权限更新

如果需要给某个角色添加或者删除某行的权限,只需对对应位图中的相应位进行更新即可。

2.7 优点与考虑

  • 高效性: 位图操作非常高效,适合大规模数据的权限管理。

  • 空间开销: 位图占用空间较小,尤其在行数较多时。

  • 灵活性: 适用于多种查询条件的组合。

03.Milvus具体功能演示

场景:企业 RAG,不同部门之间有不同的 Knowledge base,有些是公开的,有些是机密的,希望基于 entity/document 管理这些权限

Role 定义:假设角色中有超级管理员 admin, 以及下面根据业务部分组成的不同角色, 例如 [ceo, finance, sales, developer]

3.1 权限列定义

在上面所示的权限模型中,采用 array 列存储权限信息,field_name 可以自定义,array 的最大长度根据每个用户自己具体的使用场景设定,并在此列建立 BITMAP 索引,如下所示:

# 1. Set up a Milvus client  
client = MilvusClient(  
    uri=CLUSTER_ENDPOINT  
)  
  
# 2. Create a collection  
schema = MilvusClient.create_schema(  
    auto_id=False,  
    enable_dynamic_field=False,  
)  
  
# 3. define schema   
schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)  
schema.add_field(field_name="data", datatype=DataType.VARCHAR, max_length=100)  
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=128)  
  
# 4. add security column  
schema.add_field(field_name="security_group", datatype=DataType.ARRAY,   
                 element_type=DataType.VARCHAR, max_capacity=10, max_length=100)  
  
index_params = MilvusClient.prepare_index_params()  
index_params.add_index(  
    field_name="vector",  
    index_type="IVF_FLAT",  
    metric_type="L2",  
    params={"nlist": 1024}  
)  
  
# 5. create bitmap index for security column  
index_params.add_index(field_name="security_group",   
                       index_type="BITMAP")  
  
# 6. create collection  
client.create_collection(  
    collection_name="test_collection",  
    schema=schema,  
    index_params=index_params  
)  

3.2 权限写入

在写入每行数据的时候需要指定该行数据可以被读取的role 有哪些,即在权限列写入role 角色即可, 如下所示

data =[]  
data.append({  
        "id": random.randint(0, 100000),  
        "vector": [ random.uniform(-1, 1) for _ in range(128) ],  
        "data": "data" + str(random.randint(0,100000)),  
        # ceo role can read  
        "security_group": ["ceo"]  
})  
  
data.append({  
        "id": random.randint(0, 100000),  
        "vector": [ random.uniform(-1, 1) for _ in range(128) ],  
        "data": "data" + str(random.randint(0,100000)),  
         # finance role can read  
        "security_group": ["finance"]  
})  
  
data.append({  
        "id": random.randint(0, 100000),  
        "vector": [ random.uniform(-1, 1) for _ in range(128) ],  
        "data": "data" + str(random.randint(0,100000)),  
        # both sales and developer can read  
        "security_group": ["sales", "finance"]  
})  
  
res = client.insert(collection_name="test_collection", data=data)  

3.3 权限查询

当在search 或者query 查询时,需要加入对特定role 的限定查询,即只能看到指定role 的数据,其他数据对于查询role 不可见,如下所示:

3.3.1 只查询可见列

res = client.query(  
    collection_name="test_collection",  
    # 查询仅 ceo role 可见的数据  
    filter='array_contains(security_group, "ceo")',  
    output_fields=["id", "data", "security_group"],  
)  
print("ceo role read:")  
print(res)  
  
res = client.query(  
    collection_name="test_collection",  
    # 查询仅 sales role 可见的数据  
    filter='array_contains(security_group, "sales")',  
    output_fields=["id", "data", "security_group"],  
)  
print("sales role read:")  
print(res)  
  
res = client.query(  
    collection_name="test_collection",  
    # 查询仅 developer 可见的数据  
    filter='array_contains(security_group, "develop")',  
    output_fields=["id", "data", "security_group"],  
)  
print("developer role read:")  
print(res)  
  
res = client.query(  
    collection_name="test_collection",  
    # 查询仅 developer 或者 ceo 可见的数据  
    filter='array_contains_any(security_group, ["develop", "ceo"])',  
    output_fields=["id", "data", "security_group"],  
)  
print("developer or ceo role read:")  
print(res)  

以上查询结果如下所示:

ceo role read:  
data: [  
"{'security_group': ['ceo'], 'id': 3443, 'data': 'data35077'}",   
"{'security_group': ['ceo'], 'id': 12181, 'data': 'data99090'}",   
"{'security_group': ['ceo'], 'id': 16551, 'data': 'data74619'}",   
"{'security_group': ['ceo'], 'id': 24466, 'data': 'data1373'}", ...  
sales role read:  
data: [  
"{'data': 'data75305', 'security_group': ['sales'], 'id': 9122}",   
"{'data': 'data61054', 'security_group': ['sales'], 'id': 20087}",   
"{'data': 'data47948', 'security_group': ['sales', 'develop'], 'id': 21726}",   
"{'data': 'data8596', 'security_group': ['sales'], 'id': 40090}", ...   
developer role read:  
data: [  
"{'data': 'data1515', 'security_group': ['develop'], 'id': 6429}",   
"{'data': 'data47031', 'security_group': ['develop'], 'id': 10953}",   
"{'data': 'data47948', 'security_group': ['sales', 'develop'], 'id': 21726}",   
"{'data': 'data86894', 'security_group': ['develop'], 'id': 56980}"], ...   
developer or ceo role read:  
data: [  
"{'data': 'data35077', 'security_group': ['ceo'], 'id': 3443}",  
 "{'data': 'data1515', 'security_group': ['develop'], 'id': 6429}",   
 "{'data': 'data47031', 'security_group': ['develop'], 'id': 10953}",   
 "{'data': 'data99090', 'security_group': ['ceo'], 'id': 12181}", ...  

可精准展示具体角色所能看到的数据,而屏蔽其权限之外的内容,同时可以通过 security_group 的 array 自由叠加权限。

3.3.2 自定义 filter + role 权限可见

用户某些情形也可以加一下自定义的查询 filter, 这些 filter 会 apply 在标量列的查询条件中,即在查询时,需加上role 的可见性与 filter 做联合查询,如下所示:

  
res = client.query(  
    collection_name="test_collection",  
    # sales role 查询 filter "pk in [1, 3, 5]"  
    filter='pk in [1, 3, 5] && array_contains(security_group, "sales")',  
    output_fields=["id", "data", "security_group"],  
)  
  
res = client.query(  
    collection_name="test_collection",  
    # developer role 查询 filter "pk > 10"  
    filter='pk > 10 && array_contains(security_group, "develop")',  
    output_fields=["id", "data", "security_group"],  
)  

3.4 权限更新

某些时候,需要对权限进行更改,如增加某行数据对于某个Role 的权限,或者删除某行数据对于Role 的可见性,

可通过milvus 的upsert 接口更新。

如下所示:

upsert_row_update = {  
        "id": 101,  
        "vector": upsert_vector,  
        "data": upsert_data,  
        # update role   
        "security_group": ["finance", "sales"]  
}  
res = client.upsert(  
    collection_name="test_collection",  
    data=upsert_row_update)  

结果:

pk = 101:  
data: [" {'id': 101,  
'data': 'data63309',   
'vector': [0.38069534, 0.15088418, -0.6266929, -0.6038463, 0.2516377...],  
'security_group': ['finance'],"]    
  
after upsert  
data: ["{'id': 101,   
'data': 'data63309',   
'vector': [0.38069534, 0.15088418, -0.6266929, -0.6038463, 0.2516377...],   
'security_group': ['finance', 'sales']}"]  

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值