背景与行业需求
本次的行业落地分享的是来自和睦家医疗数智化AI团队自研的 UFH 医学翻译大模型,该自研模型在临床应用中得到专家和临床医生的广泛好评。
和睦家医疗(UFH)作为进入中国的首批外资医院,拥有深厚的国际化医疗发展历史和规模化外籍医疗团队,为全球各地患者提供_多语言_沟通及诊疗服务。据统计,医院内部英文医疗数据占比超过50%,西班牙语、法语等其他语言均有涉及。此外,医疗机构的英文病历还需要定期翻译为中文病历,提交给卫健部门进行定期审查,通过医疗文书准确传达病情、治疗方案和护理指导至关重要。
不同于常规用语翻译,医疗场景中的英文病历翻译有其独特的复杂之处:
-
医疗专业术语繁多,准确的术语翻译是难点之一;
-
医学术语有大量缩写,且在不同场景下的含义差异较大;
-
病历文本格式和书写规范的专业性很强。
在医疗场景下,通用翻译软件准确率较低,容易出现理解偏差。在翻译模型投入使用之前,专业的医疗翻译专家与双语临床医生投入大量时间进行病案翻译和校准工作,以保证医疗病案翻译的质量。
技术路线与实现
图1:UFH医疗翻译大模型技术路线图
在明确了场景痛点和需求,同时为了解决医疗数据面临的私密性和安全性问题,和睦家医疗数智化AI团队基于开源大模型研发了_UFH AI 医学翻译大模型_,具体技术路线如下:
-
基座模型筛选:从学科知识、理解与推理、代码与数学及通用翻译四个方面,系统评估了_Llama3.1、Qwen2.5、Deepseek2_等开源大模型,最终选择了基础能力较强且中英双语能力平衡的_Qwen2.5_作为基座模型。
-
二次预训练:解析_临床指南、Pubmed文章及医学书籍_,结合和睦家医疗积累的医学术语词汇、医学缩写的场景词义表及医疗翻译专家的数据,对基座模型进行二次预训练,注入医疗行业知识,获得基础医疗大模型。
-
指令微调:通过医生构建的符合医疗场景的书写规范和临床语言习惯的翻译数据集,结合_Infinity_等通用指令数据,对基础医疗大模型进行微调,确保大模型能够准确翻译复杂的病历和报告,保证翻译的准确性和一致性。
UFH AI 医学翻译大模型 可以部署在本地,通过内网使用,无需调用外部服务,从而极大地保证了医疗数据的隐私性和安全性。优化后的医疗翻译大模型还具备一定的指令遵循能力,可以通过调整系统提示词进行多种语言的定向翻译,并按特定格式要求适应不同医疗学科和场景的描述习惯。随着大模型技术的持续优化,翻译质量也不断提升,能够适应不断变化的医疗需求。
落地与反馈
UFH AI 医学翻译大模型 在临床投入使用后,受到了广泛好评。通过与医疗翻译专家共同制定评价标准,并使用不同类别、场景的测试数据对模型进行评估,结果显示:
-
AI大模型在医疗中英文定向翻译中的准确率显著提升,且相比通用翻译软件提高了2.5倍;
-
医生们对新系统的满意度显著提升,主动使用翻译功能的次数增加了3倍。
在个别案例中,复杂的手术记录和多变格式的医疗报告均能被AI大模型准确翻译,减少了因语言误差导致的医疗风险,大幅度提高了医务人员的工作效率。
UFH AI 医学翻译大模型 在院内医疗翻译领域的成功推出,使得临床医疗翻译进入了一个全新的阶段。凭借其精准、高效且智能的翻译能力,有效消除了国际化诊疗场景下的语言障碍。和睦家医疗的AI团队将继续深化、迭代和拓展大模型的应用,探索医疗病历摘要、医疗知识查询、临床辅助决策等更广泛的医疗场景应用,进一步提升医院的医疗服务效率和质量,助力医生实现精准诊断和决策,为患者提供更加优质的医疗服务和个性化的诊疗方案。
和睦家医疗是中国大规模私立医院集团之一,提供高品质、国际标准、以医教研相结合的综合私立医疗服务,在香港、北京、上海、广州、深圳等地已经布局了11家医院和24家诊所,提供包含从家庭医学、妇产儿、心脑血管、肿瘤、泌尿、消化、骨科,重症医学等完整医疗体系链。年服务患者量超百万人次,其中外籍患者近十万人次,构建了规模可观的国际诊疗服务网络。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。