01.背景
AI技术在医疗机构的应用,已然成为当下的一种趋势!由于智慧服务评级的要求,在患者服务方面,智能分导诊和智能预问诊应用已相对普及。其他方面的患者服务应用也在不断地涌现,比如:AI智能客服、AI报告解读、AI用药指导等等。
但应用越来越普及的同时,也随之产生了一些新问题。
一是由于都是新产品,会涉及到不同的开发厂家,不同的上线时间,并且每个都是单独应用。这样就导致很多独立入口,系统之间不能很好地融合,导致应用的效果与体验都比较差!
再者,传统的互联网患者服务平台都是菜单式的服务,需要患者自己去查找、点击。随着AI技术的发展与应用(包括数字人技术),那能不能改变传统的系统服务模式,转而采用类似于人与人(患者与AI机器人)之间的互动服务模式呢?
02.思路设想
基于以上问题,我们就打造了特扬“AI智医伴诊”系统:一站式AI患者服务平台!
如下图所示:
我们的设想,有别于传统的菜单式服务入口,打造一站式,基于AI交互互动模式的,类似人与人交互的新的服务平台!
该平台有两个特点:
一、基于自然互动交互的服务模式,简单讲,患者有什么需求,都可与AI虚拟客服或医助通过交互的模式进行沟通,由AI虚拟客服或医助进行问题回复或服务推送;
二、整合现有的各种AI应用,形成一站式服务入口,为患者提供全方位、一站式的医疗服务!
03.功能介绍
整个系统的底层,是基于特扬医联MedGPT大模型平台,提供基于文字、语音或数字人的交互模式,提供一站式对患者的AI服务。
目前功能主要包括:
1)就医咨询,患者可以与AI客服进行实时地交流,提供类似于线下导医台的咨询服务。
2)服务推荐,平台会根据患者的需求和功能的使用历史记录,智能推荐患者需要的服务,如预约挂号、报告查询、体检预约、线上开单等等。
3)就医指引,结合特扬就医智管家的产品,给予患者全程的就医指引,提供主动式的患者服务。
4)智能分导诊,利用AI技术,通过对话式的咨询内容,自动分析患者的症状,为其推荐匹配高的科室与医生,有效减少患者的等待时间和就医成本。
5)健康咨询,平台会提供内容丰富且多维度的健康知识和咨询服务,包括疾病预防、营养指导、运动建议等,帮助患者更好地管理自己的健康。
6)其他个性化服务,根据患者具体的就医需求,平台还可以提供诸如报告解读、用药指导、心理健康支持等个性化服务,完善、提升患者的就医环节体验。
基于该平台,后续还可以进行功能扩充,最终为患者提供诊前、诊中、诊后全流程和就医、诊疗和健康全方位的AI服务,真正做到一站式AI服务。
总结
随着AI技术的发展,对患者的服务模式也是有可能发生较大的改变!我们的设想是利用AI技术,打造新的医患服务交互模式,找寻新的服务入口,提高医疗效率,从而提升患者的就医体验,促进AI技术的普及和应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。