吴恩达教授开源了一个专注于翻译的 AI Agent——translation-agent。
这个 translate-agent 主要以 AI 大模型为翻译引擎,再通过在工作流中增加一些针对性的建议和反思,辅以:
-
提示词设定输出风格
-
处理习语和特殊术语
-
指定语言使用或方言等
使之更易于翻译出比较符合当地语言的内容。
https://github.com/andrewyng/translation-agent
今天在 Dify 中通过可视化工作流的方式来重现一下这个 AI Agent~
Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。
由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上
Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。以下是其核心功能列表:
-
工作流
: 在画布上构建和测试功能强大的 AI 工作流程,利用以下所有功能以及更多功能。 -
全面的模型支持
: 与数百种专有/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Mistral、Llama3 以及任何与 OpenAI API 兼容的模型。 -
Prompt IDE
: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能(如文本转语音)的直观界面。 -
RAG Pipeline
: 广泛的 RAG 功能,涵盖从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他常见文档格式中提取文本的开箱即用的支持。 -
Agent 智能体
: 您可以基于 LLM 函数调用或 ReAct 定义 Agent,并为 Agent 添加预构建或自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DELL·E、Stable Diffusion 和 WolframAlpha 等。 -
LLMOps
: 随时间监视和分析应用程序日志和性能。您可以根据生产数据和标注持续改进提示、数据集和模型。 -
后端即服务
: 所有 Dify 的功能都带有相应的 API,因此您可以轻松地将 Dify 集成到自己的业务逻辑中。
为解决自然语言输入中用户意图识别的复杂性,Chatflow 提供了问题理解类节点。相对于 Workflow 增加了 Chatbot 特性的支持,如:对话历史(Memory)、标注回复、Answer 节点等。
为解决自动化和批处理情景中复杂业务逻辑,工作流提供了丰富的逻辑节点,如代码节点、IF/ELSE 节点、模板转换、迭代节点等,除此之外也将提供定时和事件触发的能力,方便构建自动化流程。
-
常见案例
-
客户服务:通过将 LLM 集成到您的客户服务系统中,您可以自动化回答常见问题,减轻支持团队的工作负担。 LLM 可以理解客户查询的上下文和意图,并实时生成有帮助且准确的回答。
-
内容生成:无论您需要创建博客文章、产品描述还是营销材料,LLM 都可以通过生成高质量内容来帮助您。只需提供一个大纲或主题,LLM将利用其广泛的知识库来制作引人入胜、信息丰富且结构良好的内容。
-
任务自动化:可以与各种任务管理系统集成,如 Trello、Slack、Lark、以自动化项目和任务管理。通过使用自然语言处理,LLM 可以理解和解释用户输入,创建任务,更新状态和分配优先级,无需手动干预。
-
数据分析和报告:可以用于分析大型数据集并生成报告或摘要。通过提供相关信息给 LLM,它可以识别趋势、模式和洞察力,将原始数据转化为可操作的智能。对于希望做出数据驱动决策的企业来说,这尤其有价值。
-
邮件自动化处理:LLM 可以用于起草电子邮件、社交媒体更新和其他形式的沟通。通过提供简要的大纲或关键要点,LLM 可以生成一个结构良好、连贯且与上下文相关的信息。这样可以节省大量时间,并确保您的回复清晰和专业。
最近幻方量化旗下深度求索(DeepSeek)宣布,DeepSeek-V3 大模型上线并同步开源:
模型参数与架构
-
参数数量
拥有 671B 个参数。
-
架构特点
采用 MoE 架构,其中包含 256 个专家,使用 sigmoid 路由的稀疏激活机制,在任何给定输入下,模型仅激活前 8 个专家。还推出了辅助无损负载平衡策略和多令牌预测(MTP)两项创新。
性能表现
-
基准测试成绩优异
在多项主路测试集训中表现出色,超越了领先的开源模型,包括 Qwen2.5-72B 和 Llama-3.1-405B,并与 Anthropic 和 OpenAI 的封闭模型 Claude-3.5-Sonnet、GPT-4O 的性能非常接近。在中文和数学基准测试中表现尤为突出,在 math-500 测试中,得分高于所有同类产品。
-
生成速度大幅提升
生成吐字速度从 20TPS 大幅提高至 60TPS,相比 V2.5 模型实现了 3 倍的提升,能够带来更加流畅的使用体验。
训练情况
-
训练成本较低
团队在大约 2788k H800 GPU 小时内完成了 DeepSeek-V3 的全部训练,假设每 GPU 小时的租赁价格为 2 美元,成本约为 557 万美元,远低于通常用于预训练大型语言模型的数亿美元。
-
训练技术优化
使用了多种硬件和算法优化,包括 FP8 混合精度训练框架和用于流水线并行的 DualPipe 算法,以降低流程成本。
应用与服务
-
功能多样
能理解和处理用户的自然语言查询,提供快速准确的回答,具备代码生成功能,可以帮助开发者快速生成代码片段,提高开发效率。
-
API 和 Web 服务
提供 API 和 Web 服务,方便用户在不同场景下集成和使用。模型 API 服务定价为每百万输入 tokens,每百万输出 tokens都有很高的性价比
使用Dify 工作流+deepseek大模型重现吴恩达的 Agent Workflow翻译, translate-agent 主要以 AI 大模型为翻译引擎,再通过在工作流中增加一些针对性的建议和反思,辅以提示词设定输出风格 处理习语和特殊术语 指定语言使用或方言等 使之更易于翻译出比较符合当地语言的内容。例如可以测试英文翻译成中文诗词,英语小说翻译成中文等等
实例测试:“You’ve seen it, right? The waters of the Yellow River, flowing down from the heavens, rushing to the sea, never returning.
翻译:君可见?黄河之水天上来,奔流入海,不复回。(效果不错!与原文很接近!)
测试 :Just that,” said the fox. “To me, you are still nothing more than a little boy who is just like a hundred thousand other little boys. And I have no need of you. And you, on your part, have no need of me. To you, I am nothing more than a fox like a hundred thousand other foxes…”
翻译:“正是如此,”狐狸说,“对我来说,你不过是个小男孩,和其他数以万计的小男孩并无二致。你我彼此都不需要对方。对你来说,我不过是一只狐狸,和其他数以万计的狐狸并无区别……”
这句话出自安托万・德・圣 - 埃克苏佩里(Antoine de Saint - Exupéry)所著的《小王子》。《小王子》是一部充满哲理和诗意的童话小说。书中的主人公是来自 B - 612 星球的小王子,在他的星际旅行过程中,遇到了各种各样的人和事。这只狐狸是小王子在地球上遇到的角色之一。狐狸的这段话在书中有着深刻的意义,它向小王子讲述了 “驯化”(tame)的概念。
通过这段话,狐狸想让小王子明白,在没有建立起特殊联系之前,人与人(或人与动物)之间可能只是茫茫人海(或动物群)中普通的一员,彼此毫无关联。但一旦建立起 “驯化” 的关系,双方就会成为彼此独一无二的存在。这体现了书中对于友情、关系以及人与人之间相互需要的一种深刻思考。它也帮助小王子理解了爱的本质以及责任,这种理念贯穿了整个故事,推动着小王子对玫瑰以及其他事物的看法产生变化。
DIFY工作流总结:
-
开始节点:需要用户提供——目标语言、原始内容、原始语言、国家(可选);
-
LLM 节点:用来将用户输入的内容翻译为目标语言;
-
条件分支节点:判断用户是否有输入 country 的变量;
-
LLM 节点-建议:如果没有 country 的变量,AI 大模型会根据翻译后的结果再给出一次优化建议;
-
LLM 节点-根据输入的 country 进行建议:译文的最终风格和语气都会与目标语言所在的国家口语风格相符;
-
变量聚合器:上面两个 LLM 节点的输出最终都会聚合到这个节点上进行输出
-
LLM 节点:根据建议,优化一次翻译内容
-
结束:最终输出到用户
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。