近期,圈里很多朋友,都尝试利用 DeepSeek 构建自己的智能体。我也利用腾讯元器,将个人公众号内容做了个智能体,可以实现简单的问答。那么延展来看,智能体除了可利用公众号内容,也可使用离线文件等方式来构建。这不禁让我考虑,是否可用这样方式构造一个数据库智能体。说干就干,花了一个小时,构建一个国产库的智能体,玩玩还不错。这里也希望,我们国产数据库的厂商,能更多专注这种新的内容分享方式,加快推进国产数据库的普及。下面我就将构建步骤,分四步来说明下。
1. 什么是“腾讯元器”
在开始之前,我们先了解下什么是“腾讯元器”。腾讯元器(https://yuanqi.tencent.com),是腾讯混元大模型团队推出的智能体创作工具,方便您通过添加提示词设定、插件、知识库等功能捏出自己喜欢的智能体。
你自己创建的智能体,可以发布出来供大家使用,也可以私有来使用。目前已经有大量定义好的智能体,方便大家来使用。我自己也定义了几个智能体,大家也可以搜索使用。
2. 专有智能体构建
智能体的创建,可分为几个步骤,全程可通过简单填写表单即可完成。后面大致说明下我的操作步骤
1).准备知识库材料
目前元器创建智能体,支持多种构建知识库的方式。如果是公众号文章就比较简单,开通授权即可;如果是问答对类型,则需要构建一个表格实现问答描述;最为通用则是文本类型,这里就需要准备一系列文档。
目前支持的文本类型,包括PDF、WORD、TXT等,这里就需要将构建下这些文件。目前国内数据库厂商大多提供了在线文档的功能,这里通过自己写的一个小爬虫将文档下载并转储成PDF。在实现上完全可以利用 DeepSeek 直接生成代码,微调后即可使用。以达梦数据库为例,官方文档位于 https://eco.dameng.com/document/dm/zh-cn/pm,以此为基础将其文档都下载下来。
2).创建知识库
创建知识库比较简单,只需要将文件上传即可。这里要注意,文档上传后需要有个处理过程,根据文档数量及大小有关系,可耐心等待一会。其具体的进度,可以在知识库列表页面中查看到。
3).创建智能体
有了知识库后,就可以创建智能体。分为两个部分,一是基础是设定部分,这里主要是提示词的部分,比较方便的是,元器提供了提示器的自动生成,稍加修改即可。
在高级设定部分,主要完成模型设置和知识库配置即可。这里需注意选择模型,可以有腾讯混元模型或DeepSeek的选择,知识库部分关联到刚才创建的知识库即可。
当然还有些更为复杂的配置,如可以调用插件和工作流。系统已内置了不少插件,可供使用;也预制了部分工作流的示例,可直接复制参考使用。
4).发布智能体
最后一步,发布智能体即可。发布后,就可以通过多种方式使用。
3. 效果体验及展望
针对构造的智能体,我们简单体验下效果
从上面效果可见,智能体已经可以承担一些简单的问答类工作。可以方便用户,快速去了解一个产品;也能弥补只有官方文档造成的入手慢、门槛高的问题。国产数据库之前常常被人诟病的问题,就是文档差、内容旧,问答智能体的出现可以在一定程度上解决这些问题。当然功能远不限于此,如未来提供更为丰富的插件和工作流定义,完全可以开发更为复杂的功能。未来随着智能体的发展,相信会有更多、更垂直的智能体出现,场景也不仅仅限于知识问答类的,例如针对信创场景下创建个“信创智能体”,依托于构建自各厂商产品的知识体,通过工作流分辨用户需求,可实现包括产品选型、架构对比、设计开发、语句优化等常见问题的解决。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。