农业RWA商业模型探索

农业RWA商业模型探索——"认养"到"资产化"的价值跃迁为国家的乡村振兴战略助力。

一、农业RWA与认养模式的融合逻辑

在数字经济赋能乡村振兴的战略窗口期,传统农业正经历三重价值重构:

1.资产活化:打破土地、农机等生产要素的物理边界限制

2.价值延伸:认养模式从消费端向资产端延伸

3. 风险对冲:构建农业生产的数字化风控体系

在这里插入图片描述

二、农业RWA商业模型架构解码

(核心架构数据对比表)

在这里插入图片描述

1.资产层:认养权益的数字化确权

  • 土地与作物代币化:将认养地块、果树、禽畜等实体资产拆分为NFT或证券型通证(ST),例如“一亩稻田=1000份土地代币”,支持碎片化投资与自由转让。
  • 生产过程上链:通过物联网设备实时采集作物生长数据(如土壤湿度、施肥记录、病虫害信息),生成不可篡改的“数字孪生资产包”,让认养者随时查看资产状态和生产动态。
  • 动态权益设计:将基础权益(如农产品实物交付)与增值权益(如碳积分、乡村旅游体验)分层绑定,提升通证的附加值,激励各方长期参与和增值。

2.金融层:流动性机制与衍生创新

  • DeFi+认养金融:构建去中心化借贷平台,农户可以将RWA代币作为抵押品获得流动资金支持;消费者和投资者通过质押认养通证获得分红收益,实现资金与资产的高效流转。
  • 收益权证券化:将认养农产品的未来收益打包为STO(证券型通证),例如“茶园年度茶叶收益权”,面向境外全球投资者发行,实现资产的跨境流通和融资功能。
  • 保险与衍生品:基于气候和生产数据,开发“干旱指数期货”或“产量保险代币”,为农业生产提供风险对冲机制,降低自然灾害和市场波动风险。

3.运营层:全域生态协同

  • C2F(Consumer to Farm)直连模式:消费者通过持有RWA代币参与种植决策,如选择有机肥料或制定种植方案,实现“云种植”和个性化定制,缩短产销距离。
  • 农旅融合增值:将认养权益与乡村旅游、农耕体验相结合,代币持有者不仅能获得农产品,还可享受免费住宿、采摘体验等服务,推动农业与旅游、文化的深度融合。
  • 碳汇经济整合:将农业生产过程中产生的碳汇量转化为碳资产,通过国际碳交易市场实现交易,为农户和投资者创造额外收益。

三、关键成功要素与风控矩阵

(四维驱动模型)

在这里插入图片描述

(三级风控体系)

在这里插入图片描述

四、标杆案例效益分析

(区域实践数据对比)

在这里插入图片描述

五、农业RWA的范式革命路径

(三阶段演进图谱)
[传统农业] --> B[数字化认养] B --> C[资产证券化] C --> D[全球价值网络](核心价值量化指标)

在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值