一、核心定位与适用场景
维度 | Ollama | vLLM | 引用来源 |
---|---|---|---|
目标用户 | 个人开发者、中小企业测试环境 | 企业级高并发生产环境 | |
部署复杂度 | 一键安装(5分钟完成) | 需手动配置CUDA、Kubernetes等环境 | |
硬件门槛 | 最低配置:8GB显存+16GB内存(如RTX 3060) | 推荐配置:A100/H100 GPU + 64GB显存 | |
数据安全 | 本地加密处理,无数据外传风险 | 需自行配置企业级防火墙和访问控制 |
二、技术特性与性能对比
-
核心技术创新
• Ollama:
◦ 轻量化容器化部署,支持Windows/macOS/Linux跨平台
◦ 内置模型量化技术(如DeepSeek-R1的q4版本),显存占用降低50%
• vLLM:
◦ PagedAttention:将KV Cache分块存储,支持4K以上长文本推理
◦ 连续批处理:动态合并请求,吞吐量达5000+ tokens/s(是Ollama的5倍) -
实测性能数据
场景 Ollama(7B模型) vLLM(7B模型) 提升倍数 单次响应延迟 5-10秒 1-3秒 3-5倍 并发吞吐量 10请求/秒 100+请求/秒 10倍 显存占用(4K文本) 12GB 8GB(量化后) 33%↓
三、具体部署方式对比
1. Ollama极简部署流程(以DeepSeek-R1为例)
# 步骤1:一键安装(Windows为例)
curl -fsSL https://ollama.com/install.sh | sh
# 步骤2:拉取模型
ollama pull deepseek-r1:7b
# 步骤3:启动服务(带Web界面)
docker run -d -p 3000:8080 --name open-webui ghcr.io/open-webui/open-webui:main
✅ 优势:支持离线部署,数据全程加密;Docker容器化隔离,避免环境冲突
2. vLLM企业级部署方案
# 步骤1:安装依赖
pip install vllm==0.4.1 torch==2.3.0
# 步骤2:启动分布式推理(2台A100)
python -m vllm.entrypoints.api_server \
--model deepseek-r1-7b \
--tensor-parallel-size 2 \
--swap-space 16GiB \
--gpu-memory-utilization 0.9
✅ 优势:支持动态批处理+多GPU负载均衡;内置Prometheus监控,故障自动恢复
四、避坑指南与选型建议
-
Ollama常见问题
• 模型下载中断:改用国内镜像源(如http://ollama.org.cn)
• 显存不足:启用量化参数(如ollama run deepseek-r1:7b-q4
) -
vLLM优化技巧
• 性能调优:添加--block-size 16
减少内存碎片,吞吐量提升30%
• 成本控制:采用Spot实例+自动扩缩容,云上成本降低50% -
选型决策树
if (需求 == "本地测试/个人使用") → 选择Ollama elif (需求 == "高并发API服务") → 选择vLLM else → 混合部署(Ollama开发 + vLLM生产)
五、行业应用案例
-
Ollama成功实践
• 某法律团队用RTX 4090+Ollama部署DeepSeek-14B,合同审核效率提升400%
-
vLLM标杆项目
• 某电商平台用vLLM集群(8台H100)支撑日均1亿次搜索请求,响应延迟<500ms
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。