2025年,AI技术正经历从“模型崇拜”到“场景适配”的深刻转变。企业不再满足于通用模型的“平均能力”,而是通过MCP、RAG、Function Calling、Agent与微调等技术组合,搭建适配业务的“AI乐高”。这些技术如何定义边界?如何协同创造价值?本文将从定义与核心功能、优劣势对比、场景应用三个维度为大家拆解,希望能有所帮助。
一、技术定义与核心功能
MCP(模型上下文协议):AI生态的“万能接口”
定义:由Anthropic提出的开放协议,标准化大模型与外部工具、数据的交互方式,实现“一次开发,全平台通用”。
功能:
①动态工具发现:AI模型无需预定义函数即可调用新工具。
②跨平台集成:统一对接Slack、ERP等异构系统。
③权限隔离:敏感操作需二次确认,保障企业数据安全。
RAG(检索增强生成):大模型的“外接大脑”
定义:通过向量数据库检索外部知识,增强大模型回答的专业性。
功能:
①知识动态更新:政策变更次日即可生效。
②可解释性增强:答案标注引用来源(如《XX法规》第X条)。
③冷启动友好:仅需结构化知识库即可覆盖80%基础场景。
Function Calling:大模型的“机械臂”
定义:允许大模型通过JSON指令调用外部API,突破训练数据限制。
功能:
①实时数据获取:天气、股价等动态信息查询。
②系统操作执行:控制智能家居、操作数据库。
③复杂任务分解:旅行规划需串联天气、航班、酒店API。
Agent(智能体):AI的“自动驾驶模式”
定义:具备记忆、规划、工具使用能力的自主应用系统。
功能:
①多步骤推理:拆解“策划营销方案”为竞品分析、预算分配等子任务。
②环境感知:结合企业数据与业务规则动态调整决策。
③人机协同:AI处理结构化任务,人工聚焦模糊判断。
微调(Fine-tuning):行业的“定制裁缝”
定义:基于领域数据调整模型参数,提升特定任务表现。
功能:
①领域适配:医疗模型学习CT影像诊断规则。
②成本优化:蒸馏小模型推理速度提升3-10倍。
③隐私保护:本地化部署避免数据外泄。
二、技术优劣势对比
三、技术协同应用场景
场景1:智能法务助手
技术组合:RAG(法律条文库) + Function Calling(合同比对)------ Agent(风险评估)
工作流:
1、RAG检索最新《民法典》条款;
2、Function Calling调用OCR接口解析合同;
3、配合prompt生成Agent评估违约风险并生成修订建议。
场景2:制造业预测性维护
技术组合:微调(设备参数模型) + MCP(对接ERP系统)------ Agent(故障诊断)
工作流:
1、微调模型学习相关设备数据特征;
2、MCP实时获取生产订单数据;
3、配合prompt生成Agent综合设备状态与排产计划预测故障。
场景3:跨境电商运营
技术组合:Function Calling(汇率API) + RAG(关税政策库)------ Agent(智能选品)
工作流:
1、Function Calling获取实时汇率与物流价格;
2、RAG检索目标国进口法规;
3、配合prompt生成Agent计算最优定价与物流方案。
四、企业技术选型建议
初创企业:优先RAG+Function Calling,低成本快速验证场景(如用RAGFlow搭建知识库)。
中大型企业:聚焦MCP+Agent生态,解决系统孤岛问题(如用MCP对接CRM/ERP)。
垂直领域:最好结合微调,通用模型难以适配行业特异性(如医疗影像诊断)。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。