AI Agent技术原理解析 —— LangManus、Deerflow...

LangManus

字节团队开源,现github下架了,使用langgraph框架开发

介绍下langgraph 多智能体架构(灵活)

38a7857b-fcf5-4ceb-a29b-f232d0b0e3b1.png

langManus架构

a1d917f0-272e-446e-8ce8-4cee95da71f3.png

系统由以下智能体协同工作:

  1. 协调员(Coordinator):工作流程的入口点,处理初始交互并路由任务
  2. 规划员(Planner):分析任务并制定执行策略
  3. 主管(Supervisor):监督和管理其他智能体的执行
  4. 研究员(Researcher):收集和分析信息
  5. 程序员(Coder):负责代码生成和修改
  6. 浏览器(Browser):执行网页浏览和信息检索
  7. 汇报员(Reporter):生成工作流结果的报告和总结

技术细节

模型分3种

  1. 推理模型
  2. 基础模型
  3. 多模态模型

a12014f2-5ba2-4ba1-ab36-2997a9e14679.png

7个智能体使用的模型

c1b4d2be-d991-478a-9d9c-2011eaf94432.png

协调员(Coordinator)

如果是闲聊就直接回复,其他去planner

748a3991-0251-4fed-bf9a-8eaba02d144e.png

d4e099da-9c20-44b5-ab26-8e10b69218cb.png

规划员(Planner)

09a4bbea-7bfe-42fc-9e7f-720a3cf7a0f2.png

研究员(Researcher)、程序员(Coder)、浏览器(Browser)

ccff0e39-0f4a-4ffc-a9ff-40f20ca35c37.png

deer-flow

看下来是langmanus的优化版本

架构

3691fcab-cfc3-4066-bc17-a7bb8d05470d.png

  1. 协调器:管理工作流生命周期的入口点

    1. 根据用户输入启动研究过程
    2. 在适当时候将任务委派给规划器
    3. 作为用户和系统之间的主要接口

规划器:负责任务分解和规划的战略组件

  1. 分析研究目标并创建结构化执行计划
  2. 确定是否有足够的上下文或是否需要更多研究
  3. 管理研究流程并决定何时生成最终报告

研究团队:执行计划的专业智能体集合:

  1. 研究员:使用网络搜索引擎、爬虫甚至 MCP 服务等工具进行网络搜索和信息收集。
  2. 编码员:使用 Python REPL 工具处理代码分析、执行和技术任务。 每个智能体都可以访问针对其角色优化的特定工具,并在 LangGraph 框架内运行

报告员:研究输出的最终阶段处理器

  1. 汇总研究团队的发现
  2. 处理和组织收集的信息
  3. 生成全面的研究报告

manus架构网上揭秘

d488b049-e728-48db-b58d-a2bbadb9c247.png

35be7e68-94c5-45b9-b1c6-98fe3f2b8ef3.png

任务规划器、任务调度器、搜索、编码、数据分析员、报告员

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值