颠覆认知:语言模型竟是决策矮子?RL调教LLM告别嘴炮王者

img

一句话概括, LLM决策三宗罪:贪得无厌、跟风从众、嘴强王者——RL调教手册教你如何让AI知行合一

第一阶段:识别核心概念

1. 论文主要贡献点分析

  1. 揭示并系统分析了三种在决策场景中导致LLM表现不佳的典型失败模式

    • Greediness(贪心):模型在尚未探索完所有可能动作时,就过早地倾向于利用眼下收益最高的动作,导致对动作空间的大部分区域缺乏有效探索。
    • Frequency Bias(频率偏置):模型容易过度复制在上下文中出现最频繁的动作,即使该动作实际并不收益最高。
    • Knowing-Doing Gap(知行脱节):模型“知道”一个正确的决策逻辑或算法,但在真正执行动作时却没有按照正确逻辑去做,出现“明白却不去做”的现象。
  2. 提出使用基于强化学习(Reinforcement Learning, RL)的微调策略来缓解这些问题

    • 通过让模型在交互过程中“自生成Chain-of-Thought (CoT)推理”并使用环境的奖励信号来进行强化学习微调(论文中称为RLFT),模型可以学到更好的行动策略,减少贪心和频率偏置,并在一定程度上缩小“知行脱节”现象。
  3. 系统评估了多种探索(Exploration)机制在LLM决策中的作用

    • 不仅研究了常见的RL探索方法(如 -greedy、强制尝试所有动作等),还考察了对LLM而言较为特殊的自我修正(Self-Correction)、一致性投票(Self-Consistency)等方法如何影响模型最终的探索和决策性能。
  4. 在多个代表性实验环境中验证了方法的效果

    • 主要测试场景包括多臂老虎机(Multi-Armed Bandits)、带上下文信息的Contextual Bandits,以及一个文字版的井字棋(Tic-tac-toe)。结果显示,经过RL微调的LLM在探索和最终成绩上都有显著提升。

2. 理解难点识别

要真正理解并复现这篇论文的思路,需要重点掌握如下方面:

  1. 三大失败模式的深层含义和成因

    • 贪心(Greediness):为何LLM会“过早满足”于当前高回报动作?它与预训练数据中“高频-高收益”联系的刻板印象或语言生成模式有什么关系?
    • 频率偏置(Frequency Bias):模型为什么在环境历史中,只要某个动作多次出现或频繁出现就会盲目跟随?这是与模仿学习、语言建模中“复制上下文”倾向相冲突还是相强化?
    • 知行脱节(Knowing-Doing Gap):LLM能在文字层面表达正确算法或思路,但具体操作时却执行错误动作,这里面到底是什么机制阻碍了它付诸行动?
  2. 基于RL的微调(RLFT)核心流程

    • 如何在LLM中实现动作—奖励的映射?
    • 模型在生成Chain-of-Thought时,怎样将奖励信号融入到内在的“推理”过程里?
    • RL微调如何帮助模型重新分配对不同动作的概率,从而减少“贪心”和“频率偏置”的影响?
  3. 探索机制在LLM决策中的特殊性

    • 常规RL中的随机探索或基于不确定度的探索在LLM里能否直接奏效?
    • 自我修正(Self-Correction)、一致性投票(Self-Consistency)等方法为什么能帮助LLM探索更多可能性?
    • 通过额外的“奖励塑形”(如给没尝试过的动作+1奖励)如何显著改变模型的行为倾向?
  4. 实验环境设置及评价指标

    • 在多臂老虎机和Contextual Bandits中如何衡量“探索是否充分”?
    • 井字棋环境里,模型如何在状态转移与有限动作空间下进行选择?
    • 不同规模LLM(2B、9B、27B参数量)的表现差异,是否可以外推到更大型模型?

3. 概念依赖关系

  • 基础认识:读者需要先理解**多臂老虎机 (MAB) 和上下文老虎机 (CB)**这类经典场景所体现的“探索-利用”冲突。只有掌握了为什么RL需要平衡探索和利用,才更容易理解贪心问题与频率偏置问题是如何出现的。
  • 三种失败模式:这三种模式之间既相互独立,又在最终导致决策不佳上有相互影响的可能。例如,“频率偏置”会进一步加剧“贪心”,而“知行脱节”则可能让任何探测到的信息无法真正被执行出来。
  • RL微调 (RLFT):在明确为什么模型需要在行动层面进行强化学习更新后,才能理解论文里的关键技术点——让LLM在生成Chain-of-Thought时也能不断吸收奖励信号,修正自身“贪心”或“偏见”倾向。
  • 探索机制:最后再去理解论文中提到的各种“探索招数”,比如 -greedy、self-correction 等,如何与RL微调相结合才能进一步增强模型的探索能力。

从依赖关系上看,可以先从多臂老虎机/决策场景的基本概念入手,再引出三大失败模式,最后过渡到“RL如何解决这些失败模式”,并在其中穿插各种探索策略的机制及效果。

最需要深入解释的核心概念

综合来看,论文中最想解决的核心难题是:如何让LLM在交互型决策环境中,不仅“想得对”还要“做得对”,并且能充分探索? 这背后最关键、也最具挑战性的概念主要有两个:

  1. “Knowing-Doing Gap”(知行脱节)——从知道正确策略到真正采取正确行动的鸿沟;
  2. 基于奖励信号的RL微调(尤其是带Chain-of-Thought的RLFT)——如何把语言模型的推理过程与强化学习的训练方式结合起来。

第二阶段:深入解释核心概念

1. 设计生活化比喻

为了直观地展示「知行脱节」和「基于奖励信号的RL微调如何弥合这个问题」,我们可以把整个过程类比成一个“厨艺大赛”场景:

  • 你可以想象有一位**“大厨候选人”**(对应论文中的LLM),他在理论知识层面(食谱、烹饪技巧)都很懂行,甚至能在口头或书面上说出做某道菜的正确步骤——这就好比LLM在Chain-of-Thought里可以推理出一个正确的决策逻辑。
  • 但是,当真正要在现场**“执行”(也就是操作厨房用具、火候掌握、选料顺序等)时,这位大厨可能会被各种习惯和历史经验所干扰,导致最后没有按照理论所说的那样去做。这就是文中提到的Knowing-Doing Gap**,即“知道怎么做,却没真正做对”。
  • 大赛中有一个**“评分裁判”**(环境中的奖励),根据大厨做出来的菜品质量现场打分。也就是说,每次尝试新菜谱,做得好就给一定的正面分数,做得不好就扣分。
  • 因为这位大厨候选人在参赛前大量阅读过各种食谱(相当于LLM的大规模语言模型预训练),他有很多固有“语言”或“模仿”倾向,比如总爱“重复”出现频率最高的菜式做法(类似Frequency Bias),或者仅仅根据自己过去做过一次成功的菜就反复照搬(类似Greediness)。
  • 为了让这位大厨最终能“知行合一”,裁判决定让他边做边学,每做一次都用**“强化学习”的方式来调整大厨下一次做菜的策略**。更具体地,会要求大厨“边说边做”:先在脑海里写下(或口头表达)如何做菜的细节思路,再根据自己的思路去操作。然后根据裁判打分(环境奖励),来微调这位大厨的“做菜策略”和“思路表述方式”——这就对应RL Fine-Tuning (RLFT) + 自生成Chain-of-Thought (CoT) 推理

2. 建立比喻与实际技术的对应关系

在这个“厨艺大赛”比喻中,每个元素对应到论文的实际技术概念如下:

  • 大厨候选人 ↔ **LLM(大规模语言模型)**他们都拥有预训练带来的丰富经验(大量文本语料或各种食谱/知识)。
  • 大厨在脑海里写下的做菜思路Chain-of-Thought (CoT) 推理过程这个思路是公开的,可以被奖励信号所评判和微调,不仅仅是最终做菜的动作。
  • 裁判评分 ↔ **环境中的奖励 (Reward)**每次“做菜”后的得分,可以是正的也可以是负的,用来指导如何改进下次的做法。
  • 知行脱节 (Knowing-Doing Gap)大厨说一套、做一套大厨可能能把菜谱讲得头头是道,但真正动手时却被老习惯或一时冲动支配。
  • Greediness(贪心)只做自己觉得最保险或眼下看似收益最高的菜式没有充分尝试其他潜在好做法,从而错失更多探索机会。
  • Frequency Bias(频率偏置)老是复制自己过去或别人经常提到的菜式做法明明可能可以创新,或者有新的食材组合更好,但还是盲目跟风过去最频繁出现的选项。
  • RL微调 (RLFT)边比赛边调教这位大厨的做菜策略让大厨的文字思路(Chain-of-Thought)和实际做菜动作都接受评分反馈,从而在下次做菜前进行参数更新。

这个对应关系之所以合理,是因为厨艺大赛情境下的“边说边做”非常契合LLM在交互式环境里“边输出推理文字、边输出动作”的双重属性。裁判打分就像RL里的奖励,让模型在生成下一步推理时能“修正”自己,而不只是机械地重复过去高频出现的做法或者只“嘴上说得好”。

3. 深入技术细节

在论文中,为了正式将“奖励”反馈融入LLM的决策过程,核心采用了基于PPO(近端策略优化,Proximal Policy Optimization)的强化学习微调目标,并加了对参考策略(即原始预训练模型)做KL约束的项。原文的主要公式是下述第(2)式(PPO + KL):

下面先“照搬”论文中的公式,然后再逐一拆解其自然语言含义:

  1. 原始数学形式

  2. 符号替换为自然语言版本

    • :“大厨用当前策略在上下文下,对一段完整输出(包括思路和动作)的概率”。
    • :其实可以理解为“大厨的完整表现”,既包含“思路解释”也包含“实际动作”。
    • :训练过程中上一轮收集数据时的大厨策略,作用是做比值以稳定更新。
    • :优势函数(Advantage),表示“这次表现的好坏程度相对于平均水平的差距”。
    • :为了防止更新过大,对概率比值做裁剪。
    • :衡量“大厨当前做菜的风格”与“初始预训练风格”(参考策略)之间的差异大小。论文里加了一个系数来控制这个差异不要太大。
    • :就是想要在这个期望下最大化整体奖励,也就是让“大厨的动作和思路”在环境中得到的反馈最优。

简言之,这个公式的要点是:

  • PPO部分(那一大串 )在保证训练稳定性、避免“走极端”更新的前提下,尽量让更高优势()的动作-思路组合得到更大概率;
  • KL惩罚项()确保我们不会让大厨彻底放弃它原本在预训练时学到的一切能力,而是适度微调。

在对应的厨艺大赛比喻里:

  • PPO部分就像告诉大厨:“你只要把这道菜做得比你过去的平均水平更好,就应该多提高这一策略;但别一次改进得太过激烈,以防你‘忘本’或者出格。”
  • KL惩罚项则像和大厨说:“不能因为要追求高分就把自己全部的经典功底都抛弃,你依然是你,只是需要在原有基础上稍加调整。”

4. 将技术细节与比喻相互映射

回到“厨艺大赛”情景,让我们细化一下每个技术步骤在比喻中的对应方式,并突出「Knowing-Doing Gap」如何被克服的过程:

  1. 大厨在脑海中先写下做菜思路(CoT)

    • 技术上:LLM先生成一段Chain-of-Thought文本,推理自己接下来要做什么动作、为什么要选这些动作。
    • 比喻中:就像大厨一边拿着纸笔,列出详细做菜步骤和理由。
  2. 大厨实际执行动作

    • 技术上:从CoT文本中抽取“最终动作”,在环境中执行。
    • 比喻中:大厨依照纸笔上的步骤,真的把油盐酱醋、火候调配都操作起来。
  3. 评委打分(环境返回奖励)

    • 技术上:根据动作产生的回报(reward),若奖励高说明“大厨此时决策好”,若奖励低说明“失误或欠缺”。
    • 比喻中:裁判品尝后给一个分数,或者直接说“太咸了”或“不错很鲜美”之类的反馈。
  4. 用PPO+KL公式来更新“策略”

    • 技术上:用公式(2)里那套和机制,让高优势的(即思路+动作)更易被输出,但又不偏离初始参考策略太远。
    • 比喻中:大厨回去反思:“我这次是怎么想的,怎么做的?为什么会得到这个分数?下次要更倾向类似的做法吗?还是要小幅修正?” 但不会彻底丢掉自己原本的烹饪逻辑。
  5. 克服Knowing-Doing Gap

    • 技术上:因为整个“思路—动作”是一起接受奖励训练的,模型不能只在文字层面算出正确答案,却在动作层面选了错的东西,否则就会在PPO目标里得到较差的优势;下次生成相同组合出现的概率就会下降。
    • 比喻中:大厨不能只在“纸笔记下的菜谱”上写对,然后真实操作却做错,因为裁判是根据真实做出来的菜评分。做错了就没分,下次就要改掉那种“说对做错”的习惯,以免持续丢分。

这里要特别注意的一点是:比喻虽然形象,但也略有局限。现实中LLM的训练不是一个人类大厨凭直觉就能快速调整,而是通过复杂的梯度更新与参数调优来实现。但该比喻足以帮助读者理解“为什么要在输出思路和输出动作都贴上奖励信号、共同进行更新,才能逐渐弥合‘知行脱节’。”

5. 总结

综上所述,通过“厨艺大赛”比喻,可以形象理解论文中的几个要点:

  1. 知行脱节 (Knowing-Doing Gap) 好比一位大厨能把菜谱背得很熟,但却不按正确方式下锅。
  2. RL Fine-Tuning (RLFT) 搭配Chain-of-Thought 就是让这位大厨在思路阶段和操作阶段都同时受到奖励信号反馈,避免“只说不做”或“说一套做一套”。
  3. PPO+KL公式 提供了技术层面的更新机制:既允许对高回报的策略做局部优化,又不会离原始预训练模型(相当于大厨的基本功)太远。
  4. 贪心(Greediness)和频率偏置(Frequency Bias) 也能在此过程中受到纠正,因为如果大厨一味只做某个动作却导致后期评分不佳,就会被惩罚并逐渐修正。

第三阶段:详细说明流程步骤

1. 完整模型/方案流程详解

论文围绕“让LLM在交互环境中完成决策任务”提出了一整套基于强化学习的微调(RLFT)方案,其中最核心的流程可以分为以下几个阶段:

  1. 环境初始化

    • 输入:多臂老虎机、上下文老虎机(MovieLens)、或井字棋环境的初始状态。
    • 输出:状态 (或上下文),以及可选的指令模板(告诉LLM如何输出思路和动作)。
    • 做什么:启动环境,让模型读取初始信息(如“老虎机有几把手臂”“井字棋空格在哪”)。
  2. 构建上下文(Context)

    • 输入:上一步得到的初始状态(或上下文),再加上“指令模板”和过去的历史记录(若有)。
    • 输出:一个完整的文本输入序列,通常包括:
    • 做什么:把所有信息拼接成LLM可以读懂的提示(Prompt)。
    1. 任务目标与说明(例如“请最大化累计奖励”)。
    2. 当前所处的环境状态描述(例如“当前老虎机拉了几次,每次奖励多少”)。
    3. (可选)CoT 指令提示(例如“请你先写出推理思路再给出ACTION=”)。
  3. 模型生成思路+动作(Chain-of-Thought + Action)

    • 输入:第二步输出的Prompt。

    • 输出:一段包含**推理思路(CoT)的文本片段,以及最终的ACTION=**指令。

    • 做什么:LLM在这一步“想”和“做”,先生成思路推导,最后落到一个具体动作上。示例(以多臂老虎机为例):

      思路: "我目前拉了三次红色臂,收益不错,但蓝色臂尚未试过……(省略推理细节)"
      ACTION=blue
      
    • 备注:如果模型由于习惯或其它偏置,行动出现“知行脱节”或者贪心选错臂,则会在下一步受惩罚。

  4. 从文本中解析出实际动作并执行

    • 输入:模型的完整输出(思路 + 动作)。
    • 输出:真正要执行的动作 (比如“blue”“BUTTON=2”等)。如果无法解析出有效动作,给一个惩罚。
    • 做什么:对生成文本进行正则或关键词匹配,获取“ACTION=XXX”部分,令环境执行该动作。
  5. 环境返回奖励 & 收集数据

    • 输入:动作 。
    • 输出:环境返回的奖励 以及新状态 ;在Bandit环境里,新状态可能简化为“历史记录更新”。
    • 做什么:记录这一交互数据,用于强化学习训练和更新。
  6. RL微调(PPO+KL)

    • 输入:在一个或多个回合中收集到的 或者对(其中指包含CoT+Action的输出序列)。
    • 输出:更新后的LLM参数 。
    • 做什么:使用论文中给出的PPO+KL目标函数(第(2)式)进行梯度下降,让高奖励的样本在下次更容易被生成;同时控制与原始参考策略的距离不要太大。
  7. 循环交互,直到收敛

    • 输入:更新后的模型策略、新的环境状态。
    • 输出:最终在验证集中或实际测试环境中的表现。
    • 做什么:重复3-6步,直到到达一定训练轮数或在评估指标上表现满意。

完整示例(以多臂老虎机为例)

  • 初始输入

    "你面对一个10臂老虎机,每一次ACTION=?后可以获得一定的reward。请最大化你的累计奖励。请先写下你的思路,然后给出ACTION=某一个臂。"
    
  • LLM输出

    "思路: 因为前几次尝试的绿色臂效果很好,然而也应该测试其他臂以免错失更高收益...
    ACTION=red"
    
  • 环境执行动作:将red映射到“拉红色臂”,得到奖励比如 +1.2。

  • 收集数据:进入训练缓冲区。

  • 下一轮:更新上下文并让模型再次生成思路+动作。如果反复执行并使用RL目标函数微调模型参数,模型会逐渐学到合理的探索与利用平衡。

2. 输入-处理-输出流程串联

上面已经列出的七个环节,充分展示了“输入—处理—输出”如何在整个系统中串联,下面再用更清晰的顺序列举:

  1. (环境) → 初始状态 → (与指令模板合并) → Prompt
  2. (Prompt) → LLM生成(CoT + Action) → (提取有效动作)
  3. (动作) → 环境执行得到 (reward, next_state)
  4. (一段或多段交互数据) → RL优化器(PPO+KL) → (更新后的LLM)
  5. (更新后的LLM, next_state) → 重复上一步直到结束

读者可以看到,每一步的输出都会继续作为下一个过程的输入,从而构成一个闭环的交互与训练流程。尤其在RL阶段,我们不断地将交互数据回放给优化器,让模型参数更新,这也是强化学习中最核心的“交互-学习”闭环。

3. 方法/流程伪代码示例

最后,为了让读者可以用更程序化的方式复现整个方法,这里给出一个简化版的伪代码示例(仅示意,不是论文源码):

initialize model_parameters $\theta$  # 从预训练的LLM开始
initialize replay_buffer $B$ = []

for iteration in range(num_iterations):
    # 1) 收集rollout数据
    rollout_data = []
    for episode in range(num_episodes_per_iter):
        state = env.reset()
        done = False
        history = [] # 用于记录当前episode的历史
        while not done:
            # (A) 构造prompt
            prompt = build_prompt(instruction, state, history)

            # (B) 用当前模型生成 (CoT + Action)
            # output_text 包含了 CoT 和 action
            output_text = LLM_generate($\theta$, prompt)

            # (C) 从 output_text 中解析出 action
            action = parse_action(output_text) # 例如 ACTION=blue

            # (D) 执行action, 得到r, next_state
            $r$, next_state, done = env.step(action)

            # (E) 保存 (prompt, output_text, reward) 用于训练
            # 注意:论文中保存的可能是(context $c$, generated_sequence $z$, reward_to_go $G_t$)
            # 此处简化为 (prompt, output_text, $r$)
            rollout_data.append((prompt, output_text, $r$))

            # (F) 更新 state, history
            state = next_state
            history.append((action, $r$)) # 更新历史,用于下一个prompt构建

    $B$.extend(rollout_data) # 将收集的数据存入经验回放池

    # 2) 用PPO+KL进行训练
    $\theta_{\text{old}}$ = copy($\theta$) # 保存旧策略参数
    for update_step in range(num_update_steps):
        batch = sample_from($B$, batch_size) # 从经验池中采样

        # 计算PPO+KL损失,注意这里 $A_{\text{adv}}$ (优势) 的计算需要reward-to-go和可能的价值函数
        # batch中每个元素应包含 (context $c$, generated_sequence $z$, advantage $A_{\text{adv}}$)
        # advantage $A_{\text{adv}}$ 需要根据 batch中的 rewards (or rewards-to-go) 计算
        # 伪代码中,我们将 batch 视为包含 (prompt, output_text, reward)
        # 真实实现需要将 reward 转换为 advantage
        
        # 简化表示,实际计算更复杂
        loss = PPO_KL_loss(current_model=LLM_with_params_$\theta$,
                           batch_data=batch, # 包含 $c, z, A_{\text{adv}}$
                           old_model_params=$\theta_{\text{old}}$,
                           reference_model_params=$\theta_{\text{ref}}$, # 预训练模型参数
                           beta_kl=$\beta_{\text{KL}}$, # KL_coefficient
                           epsilon_clip=$\epsilon_{\text{clip}}$) # PPO_clip_param

        # 计算梯度并更新 $\theta$
        gradients = compute_gradients(loss, $\theta$)
        $\theta$ = update_parameters($\theta$, gradients)

    # 可选: 清空部分或全部经验池 $B$,或根据策略进行保留
    # $B$.clear() 

# 最后输出训练完成的 LLM
return model_parameters $\theta$

在这个示例里,最关键的是每一步都会将“LLM输出的思路+动作”转化为“在环境中执行的真正action”,以及从环境返回的奖励r再反馈回去做微调。通过这样的闭环多次迭代,模型就能逐渐克服文中提到的GreedinessFrequency Bias、以及Knowing-Doing Gap

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值