jetson nano jacksdk4.6中cuda,cudnn,tensorrt的版本查看

JetPack 4.6上已经预装了CUDA, cuDNN and TensorRT, VPI 1.1
可以直接从官网下载(jetson sdk)使用拷贝到SD卡

JetPack 4.6 is the latest production release, and supports all Jetson modules including Jetson AGX Xavier Industrial module. JetPack 4.6 includes support for Triton Inference Server, new versions of CUDA, cuDNN and TensorRT, VPI 1.1 with support for new computer vision algorithms and python bindings, L4T 32.6.1 with Over-The-Air update features, security features, and a new flashing tool to flash internal or external media connected to Jetson.

1、查看cuda版本

cat /usr/local/cuda/version.txt

也可以使用 nvcc -V 查看,如果使用nvcc显示

kamiyuuki@kamiyuuki-desktop:~/Downloads$ nvcc
bash: nvcc: command not found

则需要在 ./bashrc 中添加路径,jack4.6默认装了cuda,tensorrt,cudnn

vim ~/.bashrc
#添加以下两行
export LD_LIBRARY_PATH=/usr/local/cuda/lib
export PATH=$PATH:/usr/local/cuda/bin
source ~/.bashrc 				//更新配置文件
kamiyuuki@kamiyuuki-desktop:~/Downloads$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Sun_Feb_28_22:34:44_PST_2021
Cuda compilation tools, release 10.2, V10.2.300
Build cuda_10.2_r440.TC440_70.29663091_0

CUDA
CUDA Toolkit provides a comprehensive development environment for C and C++ developers building GPU-accelerated applications. The toolkit includes a compiler for NVIDIA GPUs, math libraries, and tools for debugging and optimizing the performance of your applications.
JetPack 4.6 includes CUDA 10.2

2、查看cudnn版本

在PC上还是原来的老办法

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

但是发现在cudnn.h中找不到版本信息,而是在一个叫cudnn_version.h的文件夹里

~$ whereis cudnn_version
cudnn_version: /usr/include/cudnn_version.h

~$ cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR
#define CUDNN_MAJOR 8
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

~$ cat /usr/include/cudnn_version.h | grep CUDNN_MINOR
#define CUDNN_MINOR 2
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

版本为8.2

cuDNN
CUDA Deep Neural Network library provides high-performance primitives for deep learning frameworks. It provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers.
JetPack 4.6 includes cuDNN 8.2.1

TensorRT可以直接在python里面查看确认,首先在终端中打开python(注意jacksdk中配置了python2.7和python3.6,如果输入python默认打开python2.7,输入python3 才是打开python3.6,同时如果使用archiconda不能设置默认开启conda环境,因为默认conda python环境中是打不开tensorrt的)

~$python3
Python 3.6.9 (default, Jan 26 2021, 15:33:00) 
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorrt as trt
>>> print(trt.__version__)
8.0.1.6
>>>                                   

TensorRT
TensorRT is a high performance deep learning inference runtime for image classification, segmentation, and object detection neural networks. TensorRT is built on CUDA, NVIDIA’s parallel programming model, and enables you to optimize inference for all deep learning frameworks. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications.
JetPack 4.6 includes TensorRT 8.0.1

>>> import cv2
>>> print(cv2.__version__)
4.1.1

opencv等其他的python可载入环境都可以通过这样的方式确认版本

或者可以直接查看分别执行以下命令,即可查看自己的jetson nano 预搭载的CUDA版本

sudo pip3 install jetson-stats
sudo jtop

在这里插入图片描述

<think>嗯,用户的问题是在Jetson Nano上使用Jetpack 4.6时,OpenCV的CUDA支持没有启用。我需要帮他找出解决方法。首先,我得回忆一下Jetson Nano的配置和Jetpack包含的组件。根据引用[3],Jetpack确实包括了OpenCV4,并且是支持CUDA加速的。但用户遇到了CUDA未启用的问题,可能是安装或编译配置的问题。 首先,用户需要确认当前安装的OpenCV版本是否支持CUDA。引用[1]提到可以通过运行python3 -c "import cv2; print(cv2.__version__)"来查看版本。如果输出版本号,但CUDA不可用,可能需要检查编译时的配置。通常,预装的OpenCV可能没有启用CUDA支持,或者用户自己编译时没有正确配置。 根据引用[2],Jetson Nano自带了JetPack、CUDA等组件,所以应该确保CUDA环境变量正确设置。用户可能需要检查.bashrc中的CUDA路径是否正确,比如export PATH=/usr/local/cuda/bin:$PATH和export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH。这一步可以解决CUDA路径问题。 接下来,用户需要验证OpenCV是否启用了CUDA。可以通过运行Python脚本检查cv2.cuda.getCudaEnabledDeviceCount()的返回值。如果是0,说明CUDA未启用。这时候可能需要重新编译OpenCV并启用CUDA支持。 编译OpenCV的步骤可能包括安装依赖项,下载源码,配置CMake时启用CUDA,比如设置-D WITH_CUDA=ON,然后进行编译和安装。需要注意的是,编译过程可能比较耗时,而且需要足够的存储空间。此外,在编译前,确保CUDA已经正确安装,版本与Jetpack 4.6兼容。引用[4]提到安装torch时需要特定的CUDA版本,这可能影响环境,但用户的问题主要集中在OpenCV上。 用户可能遇到的常见问题包括依赖项缺失、CMake配置错误或者编译过程中的错误。建议用户按照官方文档或可靠的教程步骤进行,同时备份系统以防万一。另外,如果用户之前自行安装过其他版本的OpenCV,可能会导致冲突,需要清理旧版本再重新编译。 总结步骤应该是:检查当前OpenCV的CUDA支持情况,配置环境变量,必要时重新编译OpenCV并启用CUDA选项,最后验证是否成功。需要提醒用户在编译过程中注意依赖和配置的正确性,以及处理可能出现的错误。</think>### 逐步解决方案:在 Jetson Nano (Jetpack 4.6) 上启用 OpenCV 的 CUDA 支持 #### 1. **确认当前 OpenCV 的 CUDA 支持状态** 运行以下命令检查 OpenCV 是否已启用 CUDA: ```bash python3 -c "import cv2; print('CUDA支持:', cv2.cuda.getCudaEnabledDeviceCount() > 0)" ``` - **若输出 `CUDA支持: True`**:CUDA 已启用,无需额外操作。 - **若输出 `CUDA支持: False`**:需重新编译 OpenCV 并启用 CUDA[^1][^3]。 --- #### 2. **环境变量配置** CUDA 路径需正确设置,编辑 `~/.bashrc`: ```bash sudo nano ~/.bashrc ``` 添加以下内容(确保路径与 Jetpack 4.6CUDA 版本一致): ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 保存后执行: ```bash source ~/.bashrc ``` --- #### 3. **重新编译 OpenCV 并启用 CUDA** **步骤 1:安装依赖项** ```bash sudo apt-get update sudo apt-get install -y build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev ``` **步骤 2:下载 OpenCV 源码** ```bash git clone https://github.com/opencv/opencv.git cd opencv git checkout 4.5.4 # Jetpack 4.6 默认使用 OpenCV 4.5.x ``` **步骤 3:配置 CMake 启用 CUDA** 创建编译目录并配置: ```bash mkdir build && cd build cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D WITH_CUDA=ON \ -D CUDA_ARCH_BIN=5.3 # Jetson Nano 的 GPU 架构版本为 5.3 -D ENABLE_FAST_MATH=ON \ -D WITH_CUBLAS=ON \ -D WITH_LIBV4L=ON \ -D WITH_OPENGL=ON .. ``` - **关键参数说明**: - `WITH_CUDA=ON`:启用 CUDA 支持。 - `CUDA_ARCH_BIN=5.3`:指定 Jetson Nano 的 GPU 架构[^2]。 **步骤 4:编译并安装** ```bash make -j4 # 根据 CPU 核心数调整并行编译数(Jetson Nano 建议用 -j4) sudo make install ``` --- #### 4. **验证 CUDA 是否生效** 重新运行 CUDA 支持检查命令: ```bash python3 -c "import cv2; print('CUDA支持:', cv2.cuda.getCudaEnabledDeviceCount() > 0)" ``` - 若输出 `CUDA支持: True`,表示已成功启用。 --- #### 5. **常见问题处理** - **编译时内存不足**:增加交换空间(Swap): ```bash sudo fallocate -l 4G /swapfile sudo chmod 600 /swapfile sudo mkswap /swapfile sudo swapon /swapfile ``` - **依赖项冲突**:清理旧版本 OpenCV: ```bash sudo apt-get purge libopencv* ``` --- ### 相关引用 - 关于 Jetpack 包含的组件和 CUDA 版本确认,请参考[^2][^3]。 - OpenCV CUDA 编译的详细参数可查阅[官方文档](https://docs.opencv.org/4.5.4/d7/d9f/tutorial_linux_install.html)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值