基于 PyTorch 的模型瘦身三部曲:量化、剪枝和蒸馏,让模型更短小精悍!


在这里插入图片描述

1. 模型量化

1.1 原理介绍

模型量化是将模型参数从高精度(通常是 float32)转换为低精度(如 int8 或更低)的过程。这种技术可以显著减少模型大小、降低计算复杂度,并加快推理速度,同时尽可能保持模型的性能。
在这里插入图片描述
量化的主要方法包括:

  1. 动态量化

    • 在推理时动态地将权重从 float32 量化为 int8。
    • 激活值在计算过程中保持为浮点数。
    • 适用于 RNN 和变换器等模型。
  2. 静态量化

    • 在推理之前,预先将权重从 float32 量化为 int8。
    • 在推理过程中,激活值也被量化。
    • 需要校准数据来确定激活值的量化参数。
  3. 量化感知训练(QAT)

    • 在训练过程中模拟量化操作。
    • 允许模型适应量化带来的精度损失。
    • 通常能够获得比后量化更高的精度。

1.2 PyTorch 实现

import torch

# 1. 动态量化
model_fp32 = MyModel()
model_int8 = torch.quantization.quantize_dynamic(
    model_fp32,  # 原始模型
    {
   torch.nn.Linear, torch.nn.LSTM},  # 要量化的层类型
    dtype=torch.qint8  # 量化后的数据类型
)

# 2. 静态量化
model_fp32 = MyModel()
model_fp32.eval()  # 设置为评估模式

# 设置量化配置
model_fp32.qconfig = torch.quantization.get_default_qconfig('fbgemm')
model_fp32_prepared = torch.quantization.prepare(model_fp32)

# 使用校准数据进行校准
with torch.no_grad():
    for batch in calibration_data:
        model_fp32_prepared(batch)

# 转换模型
model_int8 = torch.quantization.convert(model_fp32_prepared)

# 3. 量化感知训练
model_fp32 = MyModel()
model_fp32.train(</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值