时间序列数据增强方法概述

时间序列数据增强方法概述

时间序列数据增强是一种提高模型泛化能力和预测准确性的技术,通过在原始数据集上生成新的样本,可以增加模型训练过程中的多样性和鲁棒性。本文将介绍几种常用的时间序列数据增强方法,并提供相应的Python代码示例。
前沿时间序列预测模型

1. 时间平移(Time Shift)

时间平移是指将时间序列中的所有数据点沿时间轴向前或向后移动固定数量的时间步长。这种技术可以模拟数据在时间上的滞后或超前效应,帮助模型学习到数据间的动态关系。

import numpy as np

def time_shift(data, shift):
    shifted_data = np.roll(data, shift)
    if shift > 0:
        shifted_data[:shift] = data[0]
    elif shift < 0:
        shifted_data[shift:] = data[-1]
    return shifted_data

# 示例
data = np.random.rand(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值