时间序列数据增强方法概述
时间序列数据增强是一种提高模型泛化能力和预测准确性的技术,通过在原始数据集上生成新的样本,可以增加模型训练过程中的多样性和鲁棒性。本文将介绍几种常用的时间序列数据增强方法,并提供相应的Python代码示例。
1. 时间平移(Time Shift)
时间平移是指将时间序列中的所有数据点沿时间轴向前或向后移动固定数量的时间步长。这种技术可以模拟数据在时间上的滞后或超前效应,帮助模型学习到数据间的动态关系。
import numpy as np
def time_shift(data, shift):
shifted_data = np.roll(data, shift)
if shift > 0:
shifted_data[:shift] = data[0]
elif shift < 0:
shifted_data[shift:] = data[-1]
return shifted_data
# 示例
data = np.random.rand(