A Survey on Large Language Model based Autonomous Agents(基于大语言模型的Agent研究综述)

基于大语言模型的Agent研究综述

前言

本文对基于大型语言模型的自主智能体进行了综述调查,从整体和全面的角度对这一领域进行了系统回顾,并提出了一种统一框架和多样应用。

阅读总结

一篇来自人大高瓴研究院的综述,详细介绍了基于LLM的智能体的发展和应用,以及对未来的预测。作为AI当前最火的领域,智能体本质上就是框架+prompt,但是其效果惊艳,能够完成很多LLM无法完成的简单任务,其在未来一定大有可为。

Paper https://arxiv.org/pdf/2308.11432.pdf

Code GitHub - Paitesanshi/LLM-Agent-Survey

Abstract

自主智能体一直是学术界一个突出的研究课题。在这一领域,过去的研究通常集中在使用有限的知识来训练孤立环境中的智能体,这与人类的学习过程有很大的不同,因此使得智能体难以实现类人的决策。近年来,通过获取大量的网络知识,大型语言模型(LLMs)在实现人类水平智能方面表现出了巨大的潜力。这引发了基于 LLM 的自主智能体研究热潮。为了充分利用 LLM 的潜力,研究人员为不同应用设计了各种智能体架构。本文对这些研究进行了全面的调查,并从整体上对自主智能体领域进行了系统的回顾。更具体地说,我们的重点在于基于 LLM 的智能体的构建,为此我们提出了一个统一的框架,涵盖了大部分以前的工作。此外,我们还提供了基于LLM 的人工智能代理在社会科学、自然科学和工程领域的各种应用摘要。最后,我们讨论了用于评估 LLM 基于的人工智能代理的常用策略。根据以前的研究,我们还提出了这个领域的一些挑战和未来方向。

1、Introduction

自主智能体一直都被认为是解决AGI的有前途的方法,它有望通过自我指导的规划和行动来完成任务。但是之前的工作,智能体都在隔绝的环境中,基于简单启发式策略函数来学习,这与人类学习方式大相径庭,因此它们无法复刻人类的决策。

近年来,LLMs基于海量数据模型参数获得了类人类智能,取得显著的成效。因此越来越多研究将LLMs作为中央控制器,来指导自主智能体获取人类决策的能力。其关键是为LLMs配备记忆和规划等关键能力,让它们像人类一样完成任务。 本文对基于LLMs的自主智能体提做了一个全面的综述,具体来说,作者将综述分为三个部分:构建,应用和评估

构建主要关注如何设计更好的智能体框架,以及激发和增强智能体完成不同任务的能力。

应用主要关注智能体在社会科学、自然科学和工程上的应用。

评估部分作者深入研究了评估基于 LLM 的自主代理的策略,重点关注主观和客观策略。

并且基于之前的研究,作者谈及了该领域的挑战,讨论了未来发展方向。

2、LLM-based Autonomous Agent Construction

我们期待基于LLM的自主智能体能够利用LLM的类人类能力来解决各种问题,为了实现这个目标,有两个重要的方面:

应该设计哪种架构来更好地使用LLm?

如何学习架构的参数,让智能体获取解决具体任务的能力?

作者首先整合了一个全面的统一框架,接着根据是否对LLM进行微调,总结智能体获取能力的策略。下面是详细的介绍。

2.1、Agent Architecture Design

image.png

LLMs在QA任务上展现巨大的潜力,但是自主智能体和QA又远远不同,因为它们需要根据指定的角色,像人一样自主感知环境并从环境中学习。为了建立LLM和智能体的桥梁,关键在于设计合理的智能体架构帮助LLM最大化其能力。

本文提出的构建框架如上图所示,由分析模块记忆模块规划模块动作模块组成。

分析模块用于识别智能体的角色,记忆模块和规划模块让智能体在动态环境中可以根据历史的行为计划未来的动作。动作模块将智能体的决策付诸于行动。分析模块影响记忆和规划模块,三者共同影

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值