基本信息:
作者单位:北京大学 香港科技大学 北京人工智能研究院 滑铁卢大学
期刊:arXiv
一句话论文介绍:可以自适应地生成和协调多个专业代理,根据不同的任务构建不同的 AI 团队
文章摘要:
大型语言模型(llm)在多智能体系统的自动任务解决方面取得了显著进展。然而,大多数现有的基于llm的多代理方法依赖于预定义的代理来处理简单的任务,这限制了多代理协作对不同场景的适应性。因此,我们引入了一个创新的框架AutoAgents,它可以根据不同的任务自适应地生成和协调多个专门的agent,从而构建一个AI团队。具体来说,AutoAgents根据任务内容动态生成多个所需的代理,并根据生成的专家代理为当前任务规划解决方案,从而将任务和角色之间的关系耦合起来。多个专门的代理相互协作以高效地完成任务。
同时,在框架中加入一个观察者角色,对指定的计划和代理的反应进行反思和改进。我们在各种基准测试上的实验表明,与现有的多智能体方法相比,AutoAgents生成的解决方案更加连贯和准确。这强调了为不同任务分配不同角色和团队合作的重要性,为处理复杂任务提供了新的视角
研究背景:
1、大多数现有的基于llm的多代理方法依赖于预定义的代理来处理简单的任务,这限制了多代理协作对不同场景的适应性。此外,手动创建大量的专家往往会消耗大量的资源。 2、LLM在处理各种需要密集知识和推理的任务时仍然面临困难,相比之下,人类经常利用协作解决问题的好处,这使他们能够有效地合作解决不同领域的非常规问题,并通过在专业之间分配工作量和应用多样性的观点和专业知识来提高解决方案的质量和可靠性。
研究问题
AutoAgents的过程分为两个关键阶段:起草阶段和执行阶段。起草阶段涉及三个预定义代理(Planner、Agent Observer和Plan Observer)之间的协作讨论,以合成适合输入问题或任务的定制代理团队和执行计划。执行阶段通过代理间的协作和反馈来细化计划,并产生最终结果。