Ollama+AnythingLLM搭建个人本地知识库RAG,可进行数据投喂
其他文章推荐
Deepseek-R1本地部署:超详细!小白也能轻松实现的 DeepSeek-R1本地化部署 (包含WebUI)
Deepseek应用: DeepSeek 实用集成
文章目录
一、下载并安装Ollama
这个步骤可以回看这一篇文章,里面有详细的如何进行下载,安装,配置环境变量,修改模型存放位置等等内容。传送门
二、下载安装AnythingLLM
1、下载AnythingLLM
打开AnythingLLM官网,点击下载桌面版本,然后找到自己电脑对应系统的版本进行下载.
进行正常的安装流程即可,记得切换安装目录,不要放在C盘下占用空间。
2、配置模型
直接点击
Get started
按钮进入
在这里选择模型的提供者,我们选择安装好的
Ollama
,如果你没下载的话先下载Ollama
。
然后这里一般会自动选择模型,我下载的是Deepseek-R1模型,这里会直接显示,没有显示的话就手动选择一下。
然后一直点击下一步,然后直接点击跳过即可。
设置好⼯作区之后,修改⼀下界⾯语⾔,点击左下⻆扳⼿进⼊设置,把“DisplayLanguage”换成“Chinese“
如果在之前的步骤中直接跳过了新建工作区,也可以在进入主页面后,手动创建工作区。
输入工作区的名称
点击工作区右侧的齿轮进行设置,点击聊天设置,选择工作区提供者,选择聊天模型,这里别忘记了更新工作区,否则无法保存选择的模型。
然后你就可以进行对话了,看看效果如何。
3、数据投喂
还是在扳⼿图标的设置⾥,点开“⼈⼯智能提供商”的下拉菜单,选择Embedder⾸选项,提供商 选择“Ollama”,模型我这里选择的是“deepseek-r1:7b”,可以根据个人的模型进行更改,记得保存更改。
点击⼯作区旁边的上传按钮;然后点击上传⽂件,再选择⽂件,移动到右侧⼯作区,最后点击保存。
测试一下是否能够在文档中检索信息,看到回答的最下⽅显⽰有引⽤就OK了。