【Ollama】手把手教你使用Ollama+AnythingLLM搭建个人本地知识库RAG,可进行数据投喂

Ollama+AnythingLLM搭建个人本地知识库RAG,可进行数据投喂

其他文章推荐
Deepseek-R1本地部署:超详细!小白也能轻松实现的 DeepSeek-R1本地化部署 (包含WebUI)
Deepseek应用: DeepSeek 实用集成

一、下载并安装Ollama

这个步骤可以回看这一篇文章,里面有详细的如何进行下载,安装,配置环境变量,修改模型存放位置等等内容。传送门

二、下载安装AnythingLLM

1、下载AnythingLLM

打开AnythingLLM官网,点击下载桌面版本,然后找到自己电脑对应系统的版本进行下载.

在这里插入图片描述

在这里插入图片描述

进行正常的安装流程即可,记得切换安装目录,不要放在C盘下占用空间。

在这里插入图片描述

2、配置模型

直接点击Get started按钮进入

在这里插入图片描述

在这里选择模型的提供者,我们选择安装好的Ollama,如果你没下载的话先下载Ollama

在这里插入图片描述

然后这里一般会自动选择模型,我下载的是Deepseek-R1模型,这里会直接显示,没有显示的话就手动选择一下。

在这里插入图片描述

然后一直点击下一步,然后直接点击跳过即可。

在这里插入图片描述

设置好⼯作区之后,修改⼀下界⾯语⾔,点击左下⻆扳⼿进⼊设置,把“DisplayLanguage”换成“Chinese“

在这里插入图片描述

在这里插入图片描述

如果在之前的步骤中直接跳过了新建工作区,也可以在进入主页面后,手动创建工作区。

在这里插入图片描述

输入工作区的名称

在这里插入图片描述

点击工作区右侧的齿轮进行设置,点击聊天设置,选择工作区提供者,选择聊天模型,这里别忘记了更新工作区,否则无法保存选择的模型。

在这里插入图片描述

在这里插入图片描述

然后你就可以进行对话了,看看效果如何。

在这里插入图片描述

3、数据投喂

还是在扳⼿图标的设置⾥,点开“⼈⼯智能提供商”的下拉菜单,选择Embedder⾸选项,提供商 选择“Ollama”,模型我这里选择的是“deepseek-r1:7b”,可以根据个人的模型进行更改,记得保存更改。

在这里插入图片描述

点击⼯作区旁边的上传按钮;然后点击上传⽂件,再选择⽂件,移动到右侧⼯作区,最后点击保存。

在这里插入图片描述

在这里插入图片描述

测试一下是否能够在文档中检索信息,看到回答的最下⽅显⽰有引⽤就OK了。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值