条件平差详解

本文详细介绍了条件平差的基本原理,包括线性代数基础、函数模型、随机模型、估计准则和精度评定。通过拉格朗日乘数法推导了参数估计过程,并展示了如何计算精度矩阵。此外,还探讨了条件平差在水准网、测角网、侧边网、边角网和单一导线网等不同测量网络中的应用,明确了必要观测数据和起算数据的数量关系。最后,给出了弧度与秒的转换公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

条件平差

平差方法

基本的线代基础
( A B ) T = B T A T [ ( A B ) − 1 ] T = [ ( A B ) T ] − 1 ∂ A B T ∂ X = A T ∂ B ∂ X + B T ∂ A ∂ X \begin{aligned} &(AB)^T=B^TA^T \\ &[(AB)^{-1}]^T=[(AB)^{T}]^{-1} \\ &\frac{\partial AB^T}{\partial X}=A^T\frac{\partial B}{\partial X}+B^T\frac{\partial A}{\partial X} \end{aligned} (AB)T=BTAT[(AB)1]T=[(AB)T]1XABT=ATXB+BTXA
条件平差的函数模型:
A V − W = 0 W = − ( A L + A 0 ) \begin{array}{l} AV-W=0\\ W=-(AL+A_0) \end{array} AVW=0W=(AL+A0)
随机模型:
D = σ 0 2 Q = σ 0 2 P − 1 D=\sigma_0^2Q=\sigma_0^2P^{-1} D=σ02Q=σ02P1
估计准则:
V T P V = min ⁡ V^TPV=\min VTPV=min
根据拉格朗日乘数法:
Φ = V T P V − 2 K T ( A V − W ) \Phi=V^TPV-2K^T(AV-W) Φ=VTPV2KT(AVW)
对其求导:
∂ Φ ∂ V = 2 V T P − 2 K T A = 0 \frac{\partial \Phi}{\partial V}=2V^TP-2K^TA=0 VΦ=2VTP2KTA=0
即:
P T V = A T K → V = P − 1 A T K = Q A T K P^TV=A^TK\rightarrow V=P^{-1}A^TK=QA^TK PTV=ATKV=P1ATK=QATK
其中权阵 P P P的转置等于其自身

将式代入: A V − W = 0 AV-W=0 AVW=0

则有:
A Q A T K − W = 0 → K = ( A Q A T ) − 1 W = N − 1 W AQA^TK-W=0 \rightarrow K=(AQA^T)^{-1}W=N^{-1}W AQATKW=0K=(AQAT)1W=N1W
再将 K K K的解代回: V = Q A T K V=QA^TK V=QATK

则有:
V = Q A T N − 1 W = Q A T ( A Q A T ) − 1 W V=QA^TN^{-1}W=QA^T(AQA^T)^{-1}W V=QATN1W=QAT(AQAT)1W

精度评定

按照单位权中误差的定义,有:
σ ^ 0 = V T P V n − t = V T P V r \hat \sigma_0=\sqrt{\frac{V^TPV}{n-t}}=\sqrt{\frac{V^TPV}r} σ^0=ntVTPV =rVTPV
上述参数都可根据平差过程中求得,在此不再赘述。

按照协因数阵与方差阵之间的关系,有:
D L ^ L ^ = σ ^ 0 2 Q L ^ L ^ D_{\hat L\hat L}=\hat \sigma_0^2 Q_{\hat L\hat L} DL^L^=σ^02QL^L^

Z = [ L W K V L ^ ] = [ I − A − N − 1 A − P − 1 A T N − 1 A I − P − 1 A T N − 1 A ] L + [ 0 − A 0 − N − 1 A 0 − P − 1 A T N − 1 A 0 − P − 1 A T N − 1 A 0 ] Z=\left[\begin{array}{c}L\\W\\K\\V\\\hat L\end{array}\right] =\left[\begin{array}{c}I\\-A\\-N^{-1}A\\-P^{-1}A^TN^{-1}A\\I-P^{-1}A^TN^{-1}A\end{array}\right]L+\left[\begin{array}{c}0\\-A_0\\-N^{-1}A_0\\-P^{-1}A^TN^{-1}A_0\\-P^{-1}A^TN^{-1}A_0\end{array}\right] Z=LWKVL^=IAN1AP1ATN1AIP1ATN1AL+0A0N1A0P1ATN1A0P1ATN1A0
此处推导 L ^ \hat L L^的计算过程:
L ^ = L + V = L + Q A T N − 1 W = L + Q A T N − 1 [ − ( A L + A 0 ) ] = ( I − Q A T N − 1 A ) L − Q A T N − 1 A 0 \hat L=L+V=L+QA^TN^{-1}W=L+QA^TN^{-1}[-(AL+A_0)]=(I-QA^TN^{-1}A)L-QA^TN^{-1}A_0 L^=L+V=L+QATN1W=L+QATN1[(AL+A0)]=(IQATN1A)LQATN1A0
则:
Q L ^ L ^ = ( I − P − 1 A T N − 1 A ) Q L L ( I − P − 1 A T N − 1 A ) T Q_{\hat L\hat L}=(I-P^{-1}A^TN^{-1}A)Q_{LL}(I-P^{-1}A^TN^{-1}A)^T QL^L^=(IP1ATN1A)QLL(IP1ATN1A)T
接下来是变换的几个关键内容:

由于: N = A Q A T N=AQA^T N=AQAT为可逆矩阵,则 ( N − 1 ) T = ( N T ) − 1 = [ ( A Q A T ) T ] − 1 = ( A Q A T ) − 1 = N − 1 (N^{-1})^T=(N^T)^{-1}=[(AQA^T)^T]^{-1}=(AQA^T)^{-1}=N^{-1} (N1)T=(NT)1=[(AQAT)T]1=(AQAT)1=N1

将上述关系式进行化简:
Q L ^ L ^ = ( Q L L − Q L L A T N − 1 A Q L L ) ( I − Q L L A T N − 1 A ) T = ( Q L L − Q L L A T N − 1 A Q L L ) ( I − A T N − 1 A Q L L ) = Q L L − Q L L A T N − 1 A Q L L − Q L L A T N − 1 A Q L L + Q L L A T N − 1 ( A Q L L A T ) N − 1 A Q L L = Q L L − Q L L A T N − 1 A Q L L − Q L L A T N − 1 A Q L L + Q L L A T N − 1 N N − 1 A Q L L = Q L L − Q L L A T N − 1 A Q L L − Q L L A T N − 1 A Q L L + Q L L A T N − 1 A Q L L = Q L L − Q L L A T N − 1 A Q L L \begin{aligned} Q_{\hat L\hat L}&=(Q_{LL}-Q_{LL}A^TN^{-1}AQ_{LL})(I-Q_{LL}A^TN^{-1}A)^T\\ &=(Q_{LL}-Q_{LL}A^TN^{-1}AQ_{LL})(I-A^TN^{-1}AQ_{LL})\\ &=Q_{LL}-Q_{LL}A^TN^{-1}AQ_{LL}-Q_{LL}A^TN^{-1}AQ_{LL}+Q_{LL}A^TN^{-1}(AQ_{LL}A^T)N^{-1}AQ_{LL}\\ &=Q_{LL}-Q_{LL}A^TN^{-1}AQ_{LL}-Q_{LL}A^TN^{-1}AQ_{LL}+Q_{LL}A^TN^{-1}NN^{-1}AQ_{LL}\\ &=Q_{LL}-Q_{LL}A^TN^{-1}AQ_{LL}-Q_{LL}A^TN^{-1}AQ_{LL}+Q_{LL}A^TN^{-1}AQ_{LL}\\ &=Q_{LL}-Q_{LL}A^TN^{-1}AQ_{LL} \end{aligned} QL^L^=(QLLQLLATN1AQLL)(IQLLATN1A)T=(QLLQLLATN1AQLL)(IATN1AQLL)=QLLQLLATN1AQLLQLLATN1AQLL+QLLATN1(AQLLAT)N1AQLL=QLLQLLATN1AQLLQLLATN1AQLL+QLLATN1NN1AQLL=QLLQLLATN1AQLLQLLATN1AQLL+QLLATN1AQLL=QLLQLLATN1AQLL
其余结果可参考下表:
Q Z Z = [ Q L L Q L W Q L K Q L V Q L ^ L ^ Q W L Q W W Q W K Q W V Q W L ˙ Q K L Q K W Q K K Q K V Q K L ˙ Q V L Q V W Q V K Q V V Q V L ^ Q L ^ L Q L ^ W Q L ^ K Q L ^ V Q L ^ L ^ ] = [ Q − Q A T − Q A T N − 1 − Q A T N − 1 A Q Q − Q A T N − 1 A Q − A Q N I A Q 0 − N − 1 A Q I N − 1 N − 1 A Q 0 − Q A T N − 1 A Q Q A T Q A T N − 1 Q A T N − 1 A Q 0 Q − Q A T N − 1 A Q 0 0 0 Q − Q A T N − 1 A Q ] \begin{aligned} Q_{Z Z} &=\left[\begin{array}{ccccc} Q_{L L} & Q_{L W} & Q_{L K} & Q_{L V} & Q_{\hat{L} \hat{L}} \\ Q_{W L} & Q_{W W} & Q_{W K} & Q_{W V} & Q_{W \dot{L}} \\ Q_{K L} & Q_{K W} & Q_{K K} & Q_{K V} & Q_{K \dot{L}} \\ Q_{V L} & Q_{V W} & Q_{V K} & Q_{V V} & Q_{V \hat{L}} \\ Q_{\hat{L} L} & Q_{\hat{L} W} & Q_{\hat{L} K} & Q_{\hat{L} V} & Q_{\hat{L} \hat{L}} \end{array}\right]\\ &=\left[\begin{array}{ccccc} Q & -Q A^{T} & -Q A^{T} N^{-1} & -Q A^{T} N^{-1} A Q & Q-Q A^{T} N^{-1} A Q \\ -A Q & N & I & A Q & 0 \\ -N^{-1} A Q & I & N^{-1} & N^{-1} A Q & 0 \\ -Q A^{T} N^{-1} A Q & Q A^{T} & Q A^{T} N^{-1} & Q A^{T} N^{-1} A Q & 0 \\ Q-Q A^{T} N^{-1} A Q & 0 & 0 & 0 & Q-Q A^{T} N^{-1} A Q \end{array}\right] \end{aligned} QZZ=QLLQWLQKLQVLQL^LQLWQWWQKWQVWQL^WQLKQWKQKKQVKQL^KQLVQWVQKVQVVQL^VQL^L^QWL˙QKL˙QVL^QL^L^=QAQN1AQQATN1AQQQATN1AQQATNIQAT0QATN1IN1QATN10QATN1AQAQN1AQQATN1AQ0QQATN1AQ000QQATN1AQ

条件平差应用

应用必要起算数据个数d必要观测数据个数t测角网中条件方程的列立
水准网1
测角网4 2 p − q − 4 2p-q-4 2pq4图形条件:三角形内角和= 18 0 ∘ 180^\circ 180
极条件:边长条件
圆周角条件:圆周角为 36 0 ∘ 360^\circ 360
侧边网3 2 p − q − 3 2p-q-3 2pq3图形条件:三角形内角和= 18 0 ∘ 180^\circ 180
极条件:边长条件
圆周角条件:圆周角为 36 0 ∘ 360^\circ 360
边角网3 2 p − q − 3 2p-q-3 2pq3方位角条件:从一个已知方位角出发,推算到另一个已知方位角,方位角的推算值要与已知方位角相等。方位角条件的个数等于已知方位角的个数-1。
纵横坐标条件 : 从一个已知点的纵横坐标出发,推算到不同已知点组中另一个已知点时,纵横坐标的推算值要与已知值相等。纵横坐标的条件个数等于多余已知点的个数乘以2-2。
图形条件:三角形内角和= 18 0 ∘ 180^\circ 180
边长条件:极条件,余弦条件
圆周角条件:圆周角为 36 0 ∘ 360^\circ 360
单一导线网 2 p ′ 2p' 2p方位角条件:从一个已知方位角出发,推算到另一个已知方位角,方位角的推算值要与已知方位角相等。方位角条件的个数等于已知方位角的个数-1。
纵横坐标条件 : 从一个已知点的纵横坐标出发,推算到不同已知点组中另一个已知点时,纵横坐标的推算值要与已知值相等。纵横坐标的条件个数等于多余已知点的个数乘以2-2。
GPS基线向量网 3 p ′ 3p' 3p方位角条件
直角条件
距离条件
面积条件

其中t为必要观测数,p为所有三角点的个数,q为多余起算数据的个数,d为基准个数

一弧度等于多少秒:
ρ ′ ′ = ( 180 ∗ 3600 ) ′ ′ π \rho ''=\frac{(180*3600)''}{\pi} ρ=π(1803600)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值