组合优化问题的尺度邻近点算法研究

参考文献

赵晓智. 组合优化问题的尺度邻近点算法研究[D].中国民航大学,2020.DOI:10.27627/d.cnki.gzmhy.2020.000564.

预备知识

  非光滑凸函数的组合优化问题可以表示为:
a r g m i n x ∈ H Φ ( x ) : = a r g m i n x ∈ H [ f ( x ) + g ( x ) ] \underset{x\in H}{\rm{argmin}}\Phi (x):=\underset{x\in H}{\rm{argmin}}[f(x)+g(x)] xHargminΦ(x):=xHargmin[f(x)+g(x)]其中 H H H为Hilbert空间, f f f g g g是Hilbert空间 H H H上的真下半连续凸函数, f f f可微且具有连续的Lipschitz梯度。
  Lipschitz梯度连续表示:
∥ ∇ f ( x ) − ∇ f ( y ) ∥ ≤ L ∥ x − y ∥ , ∀ x , y ∈ H \lVert\nabla f(x)-\nabla f(y)\rVert\le L\Vert x-y\rVert,\forall x,y\in H f(x)f(y)∥Lxy,x,yH

1.邻近梯度算法
x n + 1 = p r o x γ g ( I − γ ∇ f ) ( x n ) , ∀ n ≥ 0 x_{n+1}=prox_{\gamma g}(I-\gamma\nabla f )(x_n),\forall n\ge0 xn+1=proxγg(Iγf)(xn),n0其中步长 γ \gamma γ满足 0 < γ < 2 / L 0<\gamma<2/L 0<γ<2/L p r o x γ g prox_{\gamma g} proxγg表示 γ g \gamma g γg的邻近算子,邻近算子的定义为:
p r o x g ( x ) = a r g m i n y ∈ H g ( y ) + 1 / 2 ∥ y − x ∥ 2 , x ∈ H prox_g(x)=\underset{y\in H}{\rm{argmin}} g(y)+1/2\lVert y-x \rVert^2,x\in H proxg(x)=yHargming(y)+1/2yx2,xH p r o x γ g ( x ) = a r g m i n y ∈ H g ( y ) + 1 2 γ ∥ y − x ∥ 2 , x ∈ H prox_{\gamma g}(x)=\underset{y\in H}{\rm{argmin}} g(y)+\frac{1}{2\gamma }\lVert y-x \rVert^2,x\in H proxγg(x)=yHargming(y)+2γ1yx2,xH  若原问题的解集非空,则该方法生成的迭代序列若收敛于原问题的解(证明见参考文献中[16]定理25.8);文献[17]提出变步长邻近梯度算法
x n + 1 = p r o x γ n g ( I − γ n ∇ f ) ( x n ) , x_{n+1}=prox_{\gamma_n g}(I-\gamma_n\nabla f )(x_n), xn+1=proxγng(Iγnf)(xn),生成的序列也弱收敛于原问题的解。
  带扰动的邻近尺度梯度算法[23]:
x n + 1 = p r o x λ n g ( I − λ n D ∇ f + e ) ( x n ) , x_{n+1}=prox_{\lambda_n g}(I-\lambda_nD\nabla f +e)(x_n), xn+1=proxλng(IλnDf+e)(xn),  压缩算子和邻近梯度算子的凸组合[24]:
x n + 1 = t n h ( x n ) + ( 1 − t n ) p r o x α n g ( I − α n D ∇ f + e ) ( x n ) . x_{n+1}=t_nh(x_n)+(1-t_n)prox_{\alpha_n g}(I-\alpha_nD\nabla f +e)(x_n). xn+1=tnh(xn)+(1tn)proxαng(IαnDf+e)(xn).2.superiorization方法
  在原始优化算法的基础上通过定义成本函数的方法用于解决非线性约束的优化问题,构造前提是原始优化算法具有有界扰动恢复性,使用superiorization方法改造后的算法运行时间段内、迭代步数少。[25-43]
  有界扰动恢复性:设 H H H是实Hilbert空间, Φ \Phi Φ是给定问题, A Φ : H → H A_{\Phi}:H\to H AΦ:HH是一个算法算子,我们称算子具有有界扰动恢复性,当:若任意给定 x 0 ∈ H x_0\in H x0H,由 x n + 1 = A Φ x n x_{n+1}=A_{\Phi}x_n xn+1=AΦxn生成的序列 { x n } n = 0 ∞ \{ x_n \}^{\infty}_{n=0} {xn}n=0收敛到问题 Φ \Phi Φ的解,那么任意给定给定 y 0 ∈ H y_0\in H y0H,有界序列 { v n } n = 0 ∞ \{ v_n \}^{\infty}_{n=0} {vn}n=0,可求和非负实数列 { β n } n = 0 ∞ \{\beta_n \}^{\infty}_{n=0} {βn}n=0,则由 y n + 1 = A Φ ( y n + β n v n ) y_{n+1}=A_{\Phi}(y_n+\beta_nv_n) yn+1=AΦ(yn+βnvn)生成的序列 { y n } n = 0 ∞ \{y_n \}^{\infty}_{n=0} {yn}n=0也收敛到问题 Φ \Phi Φ的解

本文工作

  介绍了多参数邻近尺度梯度算法和超松弛邻近尺度梯度算法,证明了算法的强收敛性和有界扰动恢复性,在此基础上给出superiorization算法,并设计了数值算例。

多参数邻近尺度梯度算法

v n + 1 = t n h ( v n ) + γ n v n + λ n p r o x α n g ( I − α n D ∇ f ) ( v n ) v_{n+1}=t_nh(v_n)+\gamma_nv_n+\lambda_nprox_{\alpha_ng}(I-\alpha_nD\nabla f)(v_n) vn+1=tnh(vn)+γnvn+λnproxαng(IαnDf)(vn)其中 t n , γ n , λ n ⊂ [ 0 , 1 ] {t_n},{\gamma_n},{\lambda_n}\subset[0,1] tn,γn,λn[0,1] 0 < i n f n γ n 0<\underset{n}{inf}\gamma_n 0<ninfγn t n + γ n + λ n = 1 {t_n}+{\gamma_n}+{\lambda_n}=1 tn+γn+λn=1,映射 h : H → H h:H\to H h:HH ρ \rho ρ压缩映射, ρ ∈ [ 0 , 1 ) \rho\in[0,1) ρ[0,1) ∑ n = 0 ∞ ∥ θ ( v n ) ∥ : = ∑ n = 0 ∞ ∥ ∇ f ( v n ) − D ( v n ) ∇ f ( v n ) ∥ < ∞ \sum_{n=0}^\infty{\lVert\theta(v_n)\rVert}:=\sum_{n=0}^\infty{\lVert\nabla f(v_n)-D(v_n)\nabla f(v_n)\rVert}<\infty n=0θ(vn)∥:=n=0f(vn)D(vn)f(vn)∥<
  证明思路:1、先证明上述算法生成的 { v n } \{v_n\} {vn}强收敛于问题的解,并求出该解:先证 { v n } \{v_n\} {vn}有界,再证存在 { v n } \{v_n\} {vn}的子列 { v n } \{v_n\} {vn}弱极限点集包含于原问题的解集,最后证明 { v n } \{v_n\} {vn}收敛到问题解集中的 z z z,这里 z z z是满足 ⟨ ( I − h ) z , v − z ⟩ ≥ 0 , v ∈ S \lang (I-h)z,v-z\rang\ge0,v\in S ⟨(Ih)z,vz0,vS的唯一解。2、再证该算法具有有界扰动恢复性质,即 x n + 1 = t n h ( x n + β n y n ) + γ n ( x n + β n y n ) + λ n p r o x α n g ( I − α n D ∇ f ) ( x n + β n y n ) x_{n+1}=t_nh(x_n+\beta_ny_n)+\gamma_n(x_n+\beta_ny_n)+\lambda_nprox_{\alpha_ng}(I-\alpha_nD\nabla f)(x_n+\beta_ny_n) xn+1=tnh(xn+βnyn)+γn(xn+βnyn)+λnproxαng(IαnDf)(xn+βnyn)(这里 { y n } n = 0 ∞ \{y_n \}^{\infty}_{n=0} {yn}n=0是有界序列)强收敛于问题解集中的点。3、写出该算法的superiorization算法。
  通过数值算例证明了多参数邻近尺度梯度算法的superiorization算法运行效果最优。

超松弛邻近尺度梯度算法

v n + 1 = t n h ( v n ) + γ n v n + λ n p r o x α n g ( I − α n D ∇ f ) ( v n ) + e n v_{n+1}=t_nh(v_n)+\gamma_nv_n+\lambda_nprox_{\alpha_ng}(I-\alpha_nD\nabla f)(v_n)+e_n vn+1=tnh(vn)+γnvn+λnproxαng(IαnDf)(vn)+en  此为带有外扰动的超松弛邻近尺度梯度算法,带有内扰动的超松弛邻近尺度梯度算法可以转化为外扰动超松弛邻近尺度梯度算法。证明类似上一命题,略。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离群检测是数据挖掘中的一个重要任务,其目的在于识别与大部分数据不同的数据。在实际应用中,离群具有重要意义,因为它们可能代表着数据集中的特殊事件或者异常情况。许多离群检测算法都关注于数据的密度或分布,但邻近性也是一种可以被考虑的重要属性。在本综述中,我们将介绍基于邻近性的离群检测算法,这些算法使用空间依赖关系识别异常数据。 首先,我们将介绍基于密度的离群检测算法,如DBSCAN和OPTICS,这些算法引入了密度定义来建模数据之间的邻近性。然后,我们将介绍基于距离的离群检测算法,如k近邻方法和LOF(local outlier factor),这些算法使用数据之间的距离来衡量它们之间的邻近性。接下来,我们将介绍一些利用邻近性和其他属性(如时间戳)的离群检测算法,如HOT(Histogram of Oriented Time Differences),它使用邻近性和时间信息来检测视频中的异常事件。 最后,我们将简要地讨论一些基于机器学习的离群检测算法,如孤立森林和集成方法,它们使用决策树或其他机器学习模型来检测异常数据。这些算法都使用邻近性来定位潜在的离群,但是它们的实现方法和基于密度或距离的算法有所不同。 总之,基于邻近性的离群检测算法使用空间依赖关系来定位异常数据,并在各种应用场景中都得到了广泛的应用。这些算法各有优缺,需要根据特定应用场景来选择最适合的算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值