使用pandas时,经常使用loc函数或者iloc函数进行行数据的访问,那么二者的区别和需要注意的点就总结一下吧~
区别
loc函数使用的是数据表字段的名称访问的,即参数要写行名称;而iloc函数需要通过行索引进行访问,即参数是行索引。
格式
loc函数:
单行数据的访问:loc[“行名称”]
多行数据的访问:loc[[“行名称1”, “行名称2”, …]]
需要注意的是,多行数据的访问中,需要使用二维列表作为参数。
iloc函数
单行数据的访问:iloc[行索引]
多行数据的访问:iloc[[行索引, 行索引2, …]]
实践操作
先创建一个DataFrame表
df = pd.DataFrame({
"姓名":["建国","爱国","卫国","嘎子"],
"年龄":[17,18,19,20],
"成绩":[88,89,90,91]
})
结果:
查看单行数据
查看第二行数据:
df.loc["b"] #loc函数使用的是行名称
df.iloc[1] #iloc函数使用的是索引,索引从0开始
查看多行数据
查看第二行到第三行的数据:
# 第一种方法:
df.loc[["b","c"]]
# 第二种方法:
df.iloc[[1,2]] #使用索引的二维列表
# 第三种方法:
df.iloc[1:3] #使用列表切片,左闭右看也就是索引1和2的
结果:
以上就是行数据的访问方法,使用的loc和iloc函数,行和列的同时访问下次分享吧!