大模型 | 如何用Prompt技巧激发无限创意?Prompt原则&技巧

最权威的提示词教程,莫过于ChatGPT官方文档里的6个写提示词的建议,如下对文档做了总结。
在这里插入图片描述

一、指令清晰、详细

首先,指令要清晰。要准确表达你的需求,避免让GPT去猜测你的意图。如果你要生成较短的内容,就要求GPT简短回答;如果不想结果太简单,就用专业标准;不满意格式时,示例你期望的格式;总之减少GPT的猜测,我们可以得到更准确的响应。如何做到指令清晰呢?6个建议如下:

1. 问题里包含更多细节

在向ChatGPT提问时,应包含相关且重要细节,否则,GPT可能会胡乱猜测。例:

不好的提示词:谁是总统?
更好的提示词:谁是 2021 年的墨西哥总统,选举的频率如何?
在向ChatGPT提问的时候,要在问题里,包含相关的、重要的细节。 否则的话,ChatGPT就会给你瞎猜。

不好的提示词: 总结会议记录。 
更好的提示词: 将会议记录总结成一个段落。然后编写演讲者的Markdown列表及其要点。最后,列出演讲者建议的下一步行动或行动项目(如果有)。

2. 让模型角色扮演

指定模型在回复中扮演特定角色。

GitHub人设大全:
https://github.com/f/awesome-chatgpt-prompts

例:

不好的提示词:如何控制消极情绪?
更好的提示词:我想让你担任心理健康顾问。我将为您提供一个寻求指导和建议的人,以管理他们的情绪、压力、焦虑和其他心理健康问题。您应该利用您的认知行为疗法、冥想技巧、正念练习和其他治疗方法的知识来制定个人可以实施的策略,以改善他们的整体健康状况。我的第一个请求是“如何控制消极情绪?”

3. 使用分隔符

使用三重引号、XML标签、章节标题等分隔符,帮助划分文本的不同部分,便于大模型更好地理解。

对于简单的内容,有分隔符和没有分隔符,得到的结果,可能差别不大。但是,任务越复杂,消除任务的歧义就越重要。大模型是为我们生成内容的,不要把它的算力,浪费在了理解我们输入的内容上。

例:

用三重引号分隔
将三重引号中的古诗翻译成现代汉语。 """ 关关雎鸠,在河之洲。 窈窕淑女,君子好逑。 参差荇菜,左右流之。 窈窕淑女,寤寐求之。 求之不得,寤寐思服。 悠哉悠哉,辗转反侧。 参差荇菜,左右采之。 窈窕淑女,琴瑟友之。 参差荇菜,左右芼之。 窈窕淑女,钟鼓乐之。 """

用XML标签分隔
您将获得一对关于同一主题的文章(用 XML 标记分隔),先总结一下每篇文章的论点。然后指出他们中的哪一个提出了更好的论点并解释原因。
<article> 在这里插入第一篇文章</article> 

4. 指定完成任务所需的步骤

详细写出任务所需的步骤,可使模型更容易按步骤执行。

例:

使用以下步骤完成用户请求。
第 1 步:在三重引号内的文本中用一句话总结,加前缀“Summary:”。
第 2 步:将摘要翻译成西班牙语,加前缀“Translation:”。
"""
在此插入文本
"""

5. 提供示例

通过示例让模型理解你的需求,多用于难以描述的任务或特殊风格中。

例:

假设你是一个旅行博主,你希望模型能以引人入胜的方式描述各种旅游地点。你可以这样写提示词:
你是一个旅行博主,我会在三重括号内给你提供示例。你模仿示例,写出5个回答。
提示词:告诉我关于上海的事。
""" 
提示词:告诉我关于巴黎的事。
回答:巴黎,犹如一首经久不衰的交响乐,每个角落都充满了艺术与浪漫的气息; 埃菲尔铁塔,卢浮宫,塞纳河都如同乐章,述说着这座城市的历史与未来。
 """

6. 设定回答的长度

要求大模型根据单词/字数、段落数量、要点数量生成回答,这样大模型生成的答案更有条理。

例:

用大约 50 个字总结以下文本,并总结为两个段落,三个要点。
"""
插入文本
"""

二、提供参考文本

给模型提供可信的信息来编写答案,或者引用参考文本编写答案,避免胡乱回答。

例:

使用以下文章回答问题。如果找不到答案,回复“我找不到答案”。
"""
插入文章
"""
问题:插入问题

三、将复杂任务拆分

将复杂任务分解成简单步骤,方便模型操作,提高准确性。

1. 问题分类

先把这些任务按类型分类,然后给每一种类型的任务都制定一套相应的步骤或者指令。使用这种方法的好处就是,每一次我们只需要关注当前的任务和相应的步骤或者指令,这样就可以降低出错的几率,而且也能节省成本。因为处理大任务需要的电脑运行费用,通常会比处理小任务的费用要高。

例:

您是一个网络专家,将收到客户服务查询。将每个查询分为主要类别和次要类别。主要类别:计费、技术支持、账户管理或一般查询。次要类别:退订或升级、添加支付方式、收费说明、对收费提出异议。根据不同的类别给出详细的解答。
假设客户需要“故障排除”方面的帮助。你将需要处理一些需要技术支持进行故障排查的客户服务咨询。请按照以下步骤帮助用户:
● 让他们检查路由器的所有线缆是否都已连接。注意,线缆随着时间的推移容易松动是常见的问题。
● 如果所有的线缆都已连接,但问题依然存在,请询问他们正在使用的路由器型号。
● 现在你需要指导他们如何重启设备:
  ○ 如果型号是 MTD-327J,建议他们按住红色按钮 5 秒钟,然后等待 5 分钟后再测试连接。
  ○ 如果型号是 MTD-327S,建议他们拔掉电源后再插入,然后等待 5 分钟后再测试连接。
● 如果客户在重启设备并等待 5 分钟后问题依然存在,通过输出 {"IT support requested"} 将他们转接到 IT 支持。
● 如果用户开始提问与此主题无关的问题,那么确认他们是否想结束当前的故障排查聊天,并根据以下方案对他们的请求进行分类

2. 分段总结长文/长对话

分段总结,再汇总,即总结前一部分的时候,带上之前的内容。多轮对话中,这样更利于后面回答的准确生成。

例:

问:请输入内容
回答1: [段落1内容总结]
问2:请输入内容
回答2: [段落2内容总结] + [回答1]
请根据以上格式提供每段的内容,这样能更好地对每一段进行总结,并逐步汇总所有内容,有助于生成最终的回答。

四、给大模型时间“思考”

1. 生成自己的答案再下结论

让模型先自行解决问题,之后比较并评估学生答案的正确性,让模型回答更有条理,也可提高准确性。

例:

首先想出你自己解决这个数学题的方法,然后将您的解决方案与学生的解决方案进行比较,并评估学生的解决方案是否正确。在您自己完成问题之前,不要判断学生的解决方案是否正确。

2. 隐藏推理过程

在给用户答案前,模型先在内部思考,不展示部分思考过程,即一个"内心独白(inner monologue)"的技巧。这样同样让模型回答更有条理,提高准确性,也不会干扰用户期望的输出。

例:

按照以下步骤回答用户查询。 
第 1 步 - 首先找出您自己的问题解决方案。不要依赖学生的解决方案,因为它可能不正确。将您为此步骤所做的所有工作用三重引号 (""") 括起来。 
第 2 步 - 将您的解决方案与学生的解决方案进行比较,并评估学生的解决方案是否正确。将您为此步骤所做的所有工作用三重引号 (""") 括起来。 
第 3 步 - 如果学生犯了错误,请确定您可以在不给出答案的情况下给学生什么提示。将您为此步骤所做的所有工作用三重引号 (""") 括起来。 
第 4 步 - 如果学生犯了错误,请向学生提供上一步的提示(三重引号外)。不要写“第 4 步 - ...”,而写“提示:”。

3. 让模型反思回答

让大模型再去找找看有没有之前漏掉的内容,往往能让模型的输出结果,变得更好。

例:

You will be provided with a document delimited by triple quotes. 
Your task is to select excerpts which pertain to the following question: "What significant paradigm shifts have occurred in the history of artificial intelligence." 
Ensure that excerpts contain all relevant context needed to interpret them - in other words don't extract small snippets that are missing important context. 
Please think about your answers and answer carefully.

五、使用外部工具

1. 嵌入(embedding)

使用基于嵌入的搜索来实现高效的知识检索,利用外部信息作为其输入的一部分,有助于模型生成更加明智和最新的回答,即RAG(Retrieval-Augmented Generation)。

例:

如果用户提出关于特定电影的问题,结合
```高质量的电影信息(如演员、导演等)```
来回答用户的问题。

2. 调用API

提供文档与代码示例,指导模型使用API,使用代码或者调用外部的API,产生的输出一起输入给模型使用,来进行更精确推理。

例:

结合```文档与代码示例```
您可以通过将生成的Python代码/API调用结果括在三重反引号中来进行下面的计算,
```代码在这里/API调用结果在这里```
使用它来执行计算。

注:执行模型生成的代码或API可能本身并不安全,需要一个沙盒代码执行环境来限制不受信任的代码可能造成的危害。

六、系统地测试更改

有时候很难判断新的指令或设计是让你的系统变得更好还是更糟。对于小样本量来说,很难区分真正的改进还是偶然运气。也许这种变化可以提高某些输入的性能,但却损害了其他方面的性能,所以建立一个系统测试流程更有必要。

1. 指标评估

以img2code指标对比,需要从页面整体布局、细节、字体等方面,详细评估code生成的好坏

例:
在这里插入图片描述

2. 模型评估

把模型输出的结果,统一输入模型进行打分评估。

例:

请根据评估标准给结果打分,如下:
● 准确性(Accuracy)
  ○ 定义:模型生成的回答是否准确且符合事实。
  ○ 评分标准:
    ■ 0-2分:回答严重不准确或与事实明显不符。
    ■ 3-5分:回答部分正确,但有明显错误或遗漏关键信息。
    ■ 6-8分:回答大部分正确,但有细微错误或偏差。
    ■ 9-10分:回答完全准确且无可挑剔。
● 理解能力(Comprehension)
  ○ 定义:模型是否正确理解了用户提出的问题或指示。
  ○ 评分标准:
    ■ 0-2分:完全没有理解问题,回答与问题无关。
    ■ 3-5分:部分理解了问题,但回答不完全相关。
    ■ 6-8分:大部分理解了问题,但有细微的误解。
    ■ 9-10分:完全理解问题,并能提供相关的回答。
● 生成能力(Generation)
  ○ 定义:模型生成的文本是否流畅、自然,并且符合上下文逻辑。
  ○ 评分标准:
    ■ 0-2分:生成的文本不连贯,逻辑混乱或难以理解。
    ■ 3-5分:生成的文本有部分连贯,但存在明显的逻辑错误或不自然之处。
    ■ 6-8分:生成的文本大部分连贯,逻辑合理,但有少许不自然之处。
    ■ 9-10分:生成的文本完全连贯,自然且逻辑清晰。

3. 人工评估

有些美观、简洁等任务较主观,需要人工筛选,根据选定的baseline,给出评价。举例如下:
在这里插入图片描述


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值