刷机|我的第一个Windows平板,(1)解除BL锁

刷机需谨慎,小心变砖。请提前备份重要数据,此文仅做参考

前言       

        我的小米平板5买来快吃灰两年半了,最近听说可以给pad5刷一个小米澎湃OS+Windows11的双系统。于是,我也打算给我的pad整个双系统玩玩。

        查询了相关资料后,发现需要先解锁BL锁。(出厂即为澎湃OS系统的不用看了)出厂为miui升级为hyperOS的可以采用这种方法解锁BL锁

一、准备

硬件

一台小米平板5,6+256G版本

一根USB转Type-C数据连接线

一台笔记本电脑

软件
1.小米解锁工具

小米解锁工具(官网)

2. php安装包

php-8.3

3.脚本及配置文件

Bypass-1.0-fix-universal.zip

二、BL锁解锁步骤

1.将脚本及配置中的文件复制粘贴到php解压包中

2.修改php文件夹下php.ini文件夹

注意:如果不加上路径,脚本可能找不到扩展包,而导致程序运行错误

将php.ini文件下的on windows前的分号去掉,并在extension_dir上添加上扩展包的路径

3.平板开启设备开发者模式

打开usb调试,OEM解锁,进入设备解锁状态,usb线连接平板和电脑

4.点击php文件夹下的bypass.cmd

平板双击《绑定账号和设备》,显示解锁不了很正常,只要命令行显示绿色解锁成功就行。

如果在命令行显示报错,请详细阅读Bypass-1.0-fix-universal文件夹下的README.md。

5.打开平板fastboot模式

第一,将平板关机;

第二,同时按住音量减键开关机键;

第三,看到LOGO后松手。

6.打开小米刷机工具

第一,双击miflash_unlock_7.6.727.43文件夹下的miflash_unlock.exe;

第二,扫码登录;

第三,连接平板;如果没有连接平板,可能缺乏驱动。双击MiUsbDriver.exe安装。

安装好后,依旧没有显示连接,拔数据线重连。

第四,确认解锁。

7.等待168个小时,也就是7天

三、解锁成功

168个小时之后,重新登录解锁,好的解锁成功。可以进行后续的刷机工作了。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值