工科数学分析 MA_12 Vectors and the Geometry of Space (下篇)

12.4 The Cross Product(叉乘/外积)

The Definition of Cross Product

叉积运算只适用于三维向量,不适用于二维向量

Given two nonzero vectors u ⃗ \vec{u} u and v ⃗ \vec{v} v .

  • If they are not parallel, they determine a plane. We select a unit vector n ⃗ \vec{n} n perpendicular to the plane(平面的单位法向量,告诉我们该平面的倾斜程度) by right hand rule. Then the Cross product u ⃗ × v ⃗ \vec{u} \times \vec{v} u ×v is defined as follows:

    u ⃗ × v ⃗ = ( ∣ u ⃗ ∣ ∣ v ⃗ ∣ s i n θ ) n ⃗ \vec{u} \times \vec{v}=(|\vec{u}||\vec{v}|sin\theta)\vec{n} u ×v =(u v sinθ)n

  • Since the sines of 0 and π are both zero, it make sense to define the cross product of two parallel(平面向量:方向相同或相反) nonzero vectors to be zero.

    u ⃗ × v ⃗ = 0 ⃗ \vec{u}\times\vec{v}=\vec{0} u ×v =0

在这里插入图片描述
(若为 v ⃗ × u ⃗ \vec{v}\times\vec{u} v ×u 则要从 v ⃗ \vec{v} v 展到 u ⃗ \vec{u} u )

(若分配律适用可推出)If u ⃗ = ( u 1 , u 2 , u 3 ) \vec{u} = (u_1, u_2, u_3) u =(u1,u2,u3) and v ⃗ = ( v 1 , v 2 , v 3 ) \vec{v} = (v_1, v_2, v_3) v =(v1,v2,v3) , then the cross product of u ⃗ \vec{u} u and v ⃗ \vec{v} v is the vector

u ⃗ × v ⃗ = ( u 1 i + u 2 j + u 3 k ) × ( v 1 i + v 2 j + v 3 k ) = ( u 2 v 3 − u 3 v 2 , u 3 v 1 − u 1 v 3 , u 1 v 2 − u 2 v 1 ) \vec{u}\times\vec{v}=(u_1i+u_2j+u_3k)\times(v_1i+v_2j+v_3k)=(u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1) u ×v =(u1i+u2j+u3k)×(v1i+v2j+v3k)=(u2v3u3v2,u3v1u1v3,u1v2u2v1)

We often write

u ⃗ × v ⃗ = ∣ i j k u 1 u 2 u 3 v 1 v 2 v 3 ∣ \vec{u}\times\vec{v}=\begin{vmatrix}i & j &k \\u_1 & u_2 & u_3 \\v_1 & v_2 & v_3\end{vmatrix} u ×v =iu1v1ju2v2ku3v3

The length of Cross Product

Theorem:

If θ is the angle between u ⃗ \vec{u} u and v ⃗ \vec{v} v ( 0 ≤ θ ≤ π 0 \leq θ \leq π 0θπ), then

∣ u ⃗ × v ⃗ ∣ = ∣ u ⃗ ∣ ∣ v ⃗ ∣ s i n θ |\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}|sin\theta u ×v =u v sinθ

The length of the cross product u ⃗ × v ⃗ \vec{u} \times \vec{v} u ×v is equal to the area of parallelogram(平行四边形的面积) determined by u ⃗ \vec{u} u and v ⃗ \vec{v} v .

在这里插入图片描述

The properties of Cross Product

If u ⃗ \vec{u} u , v ⃗ \vec{v} v and w ⃗ \vec{w} w are vectors and λ λ λ is a scalar, then

  1. Nonzero vectors u ⃗ \vec{u} u and v ⃗ \vec{v} v are parallel if and only if u ⃗ × v ⃗ = 0 ⃗ \vec{u}\times\vec{v}=\vec{0} u ×v =0
  2. u ⃗ × v ⃗ = − v ⃗ × u ⃗ \vec{u} \times \vec{v} = −\vec{v} \times \vec{u} u ×v =v ×u
  3. ( λ u ⃗ ) × v ⃗ = u ⃗ × ( λ v ⃗ ) = λ ( u ⃗ × v ⃗ ) (\lambda\vec{u}) \times \vec{v} = \vec{u} \times (\lambda\vec{v}) = λ(\vec{u} \times \vec{v}) (λu )×v =u ×(λv )=λ(u ×v )
  4. u ⃗ × ( v ⃗ + w ⃗ ) = u ⃗ × v ⃗ + u ⃗ × w ⃗ \vec{u} \times (\vec{v}+\vec{w}) = \vec{u} \times \vec{v}+ \vec{u} \times \vec{w} u ×(v +w )=u ×v +u ×w
  5. ( u ⃗ + v ⃗ ) × w ⃗ = u ⃗ × w ⃗ + v ⃗ × w ⃗ (\vec{u} + \vec{v} ) × \vec{w} = \vec{u} × \vec{w} + \vec{v} × \vec{w} (u +v )×w =u ×w +v ×w

在这里插入图片描述

Triple Product(混合积/三重积)

The Product u ⃗ ⋅ ( v ⃗ × w ⃗ ) \vec{u} \cdot (\vec{v}\times\vec{w}) u (v ×w ) is called the scalar triple product:

u ⃗ ⋅ ( v ⃗ × w ⃗ ) = ∣ u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 ∣ \vec{u} \cdot (\vec{v}\times\vec{w})=\begin{vmatrix}u_1 & u_2 & u_3 \\v_1 & v_2 & v_3 \\w_1 & w_2 & w_3\end{vmatrix} u (v ×w )=u1v1w1u2v2w2u3v3w3

The magnitude of scalar triple product is the volume of the parallelepiped(三个向量定义的平行六面体的体积) determined by the vectors u ⃗ \vec{u} u , v ⃗ \vec{v} v and w ⃗ \vec{w} w .

V = ∣ u ⃗ ⋅ ( v ⃗ × w ⃗ ) ∣ V=|\vec{u}\cdot(\vec{v}\times\vec{w})| V=u (v ×w )

在这里插入图片描述

(证明三个空间向量共面可以证明V=0,则三个向量定义的平行六面体的高为0)

12.5 Equations of Lines and Planes

Vector Equations of Lines

A line L in three-dimensional space is determined when we know a point P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0,z_0) P0(x0,y0,z0) on L and direction v ⃗ = ( a , b , c ) \vec{v} = (a, b, c) v =(a,b,c) of L

  • The vector equation of L:

    r ⃗ = r 0 ⃗ + t v ⃗ \vec{r} = \vec{r_0} + t\vec{v} r =r0 +tv

  • The parametric equation of L:

    x ⃗ = x 0 ⃗ + a t , y ⃗ = y 0 ⃗ + b t , z ⃗ = z 0 ⃗ + c t \vec{x} = \vec{x_0} + at,\vec{y} = \vec{y_0} + bt,\vec{z} = \vec{z_0} + ct x =x0 +at,y =y0 +bt,z =z0 +ct

where P ( x , y , z ) P(x, y,z) P(x,y,z) is an arbitrary point on L, and r ⃗ \vec{r} r and r 0 ⃗ \vec{r_0} r0 be the position vectors of P P P and P 0 P_0 P0. ( r ⃗ = O P ⃗ \vec{r} = \vec{OP} r =OP , and r 0 ⃗ = O P 0 ⃗ \vec{r_0} = \vec{OP_0} r0 =OP0 )

  • The symmetric equation of L:

    x − x 0 a = y − y 0 b = z − z 0 c \frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c} axx0=byy0=czz0

  • If one of a, b or c is 0, we can eliminate t. For instance, if a = 0:

    x = x 0 , y − y 0 b = z − z 0 c x=x_0,\frac{y-y_0}{b}=\frac{z-z_0}{c} x=x0,byy0=czz0

  • If the line L passes two points P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0,z_0) P0(x0,y0,z0) and P 1 ( x 1 , y 1 , z 1 ) P_1(x_1, y_1,z_1) P1(x1,y1,z1), the symmetric equation of the line L is:

    x − x 0 x 1 − x 0 = y − y 0 y 1 − y 0 = z − z 0 z 1 − z 0 \frac{x-x_0}{x_1-x_0}=\frac{y-y_0}{y_1-y_0}=\frac{z-z_0}{z_1-z_0} x1x0xx0=y1y0yy0=z1z0zz0

  • we denote the position vector r 0 ⃗ = O P 0 ⃗ \vec{r_0} = \vec{OP_0} r0 =OP0 , r 1 ⃗ = O P 1 ⃗ \vec{r_1} = \vec{OP_1} r1 =OP1 , the vector equation becomes

    r ⃗ = r 0 ⃗ + t ( r 1 ⃗ − r 0 ⃗ ) = t r 1 ⃗ + ( 1 − t ) r 0 ⃗ \vec{r} = \vec{r_0} + t(\vec{r_1}-\vec{r_0})=t\vec{r_1}+(1-t)\vec{r_0} r =r0 +t(r1 r0 )=tr1 +(1t)r0

  • The line segment from r 0 r_0 r0 to r 1 r_1 r1 is given by

    r ⃗ = t r 1 ⃗ + ( 1 − t ) r 0 ⃗ , 0 ≤ t ≤ 1 \vec{r}=t\vec{r_1}+(1-t)\vec{r_0},\hspace{1cm}0\leq t\leq 1 r =tr1 +(1t)r0 ,0t1

Vector Equations of the plane

A plane in three-dimensional space is determined when we know a point P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0,z_0) P0(x0,y0,z0) in the plane and a vector n ⃗ = ( a , b , c ) \vec{n} = (a, b, c) n =(a,b,c) that is orthogonal to the plane. n tells us how the plane is tilting.

  • The vector equation of the plane:

    n ⃗ ⋅ ( r ⃗ − r 0 ⃗ ) = 0 \vec{n} \cdot (\vec{r} − \vec{r_0}) = 0 n (r r0 )=0

  • The scalar equation of the plane though P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0,z_0) P0(x0,y0,z0) with normal vector n ⃗ = ( a , b , c ) \vec{n} = (a, b, c) n =(a,b,c)

    a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 o r a x + b y + c z + d = 0 a(x − x_0) + b(y − y_0) + c(z − z_0) = 0\hspace{5mm}or\hspace{5mm} ax+by+cz+d=0 a(xx0)+b(yy0)+c(zz0)=0orax+by+cz+d=0

where P ( x , y , z ) P(x, y,z) P(x,y,z) is an arbitrary point in the plane, and r ⃗ \vec{r} r and r 0 ⃗ \vec{r_0} r0 be the position vectors of P P P and P 0 P_0 P0. ( r ⃗ = O P ⃗ , r 0 ⃗ = O P 0 ⃗ \vec{r} = \vec{OP},\vec{r_0} = \vec{OP_0} r =OP ,r0 =OP0 )

  • Two planes are parallel if their normal vectors(法向量) are parallel.
  • If two planes are not parallel, then they intersect in a staight line.
  • The angle between the two planes is defined as the acute angle between their nomal vectors.

12.6 Cylinder and Quadric Surfaces(柱面和二次曲面)

Cylinder

A cylinder is a surface that consists all lines (called rulings) that are parallel to a given line(与给定直线平行) and pass through a given plane curve(通过给定平面曲线).(直线沿着一条定曲线平行移动)

Cylinders occur naturally when we graph an equation in R 3 R^3 R3 that involves just two variables.

在这里插入图片描述

Parabolic cylinder(抛物柱面)

z = x 2 z = x^2 z=x2

Any vertical plane y = k intersects the graph in a curve with equation z = x 2 z = x^2 z=x2

在这里插入图片描述

circular cylinder(圆柱面)

x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1

Any vertical plane z = k intersects the graph in a curve with equation x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1.

在这里插入图片描述

Quadric Surface

A quadric surface is the graph of a second-degree equation in three variables x, y and z, the most general such equation is

A x 2 + B y 2 + C z 2 + D x y + E y z + F x z + G x + H y + I z + J = 0. Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0. Ax2+By2+Cz2+Dxy+Eyz+Fxz+Gx+Hy+Iz+J=0.

Two standard form:

A x 2 + B y 2 + C z 2 + J = 0 , A x 2 + B y 2 + I z = 0. Ax^2 + By^2 + Cz^2 + J = 0, Ax^2 + By^2 + Iz = 0. Ax2+By2+Cz2+J=0,Ax2+By2+Iz=0.

Ellipsoid(椭球体)

x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1

PlaneCross Section
xy-planeEllipse
xz-planeEllipse
yz-planeEllipse
Parallel to xy-planeEllipse
Parallel to xz-planeEllipse
Parallel to yz-planeEllipse

在这里插入图片描述

Hyperboloid of One Sheet(单叶双曲面)

x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1

PlaneCross Section
xy-planeEllipse
xz-planeHyperbola
yz-planeHyperbola
Parallel to xy-planeEllipse
Parallel to xz-planeHyperbola
Parallel to yz-planeHyperbola

在这里插入图片描述

Hyperboloid of Two Sheet(双叶双曲面)

x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2b2y2c2z2=1

PlaneCross Section
xy-planeHyperbola
xz-planeHyperbola
yz-planeEmpty
Parallel to xy-planeHyperbola
Parallel to xz-planeHyperbola
Parallel to yz-planeEllipse

在这里插入图片描述

Elliptic Paraboloid(椭圆抛物面)

z = x 2 a 2 + y 2 b 2 z=\frac{x^2}{a^2}+\frac{y^2}{b^2} z=a2x2+b2y2

PlaneCross Section
xy-planePoint
xz-planeParabola
yz-planeParabola
Parallel to xy-planeEllipse
Parallel to xz-planeParabola
Parallel to yz-planeParabola

在这里插入图片描述

Hyperbolic Paraboloid(双曲抛物面/马鞍面)

z = y 2 b 2 − x 2 a 2 z=\frac{y^2}{b^2}-\frac{x^2}{a^2} z=b2y2a2x2

PlaneCross Section
xy-planeIntersecting lines
xz-planeParabola
yz-planeParabola
Parallel to xy-planeHyperbola
Parallel to xz-planeParabola
Parallel to yz-planeParabola

在这里插入图片描述

Elliptic Cone(椭圆锥面)

x 2 a 2 + y 2 b 2 − z 2 c 2 = 0 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=0 a2x2+b2y2c2z2=0

PlaneCross Section
xy-planePoint
xz-planeIntersecting lines
yz-planeIntersecting lines
Parallel to xy-planeEllipse
Parallel to xz-planeHyperbola
Parallel to yz-planeHyperbola

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lum0s!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值