pandas中的Series类似于一个列,也类似与一维数组,可以保存任何的数据类型。
组成有:index(索引)+数据
函数如下:
pandas.Series(data , index , dtype, name, copy)
data:一组数据(ndarray 类型)。
index:数据索引标签,如果不指定,默认从 0 开始。
dtype:数据类型,默认会自己判断。
name:设置名称。
copy:拷贝数据,默认为 False。
import pandas as pd
t = pd.Series([1, 2, 3, 22, 100])
print(t)
0 1
1 2
2 3
3 22
4 100
dtype: int64
#添加索引
t1 = pd.Series([1, 2, 3, 4, 10], index=list("abcde"))
print(t1)
a 1
b 2
c 3
d 4
e 10
dtype: int64
使用字典创建Series
a = {string.ascii_uppercase[i]: i for i in range(10)}
#{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9}
t2 = pd.Series(a)
A 0
B 1
C 2
D 3
E 4
F 5
G 6
H 7
I 8
J 9
dtype: int64
通过索引访问数据
print(t2)
A 0
B 1
C 2
D 3
E 4
F 5
G 6
H 7
I 8
J 9
dtype: int64
print(t2['A']) # 访问单个数据
0
print(t2[['A', 'G']]) # 访问的多个数据
A 0
G 6
dtype: int64