【最优传输论文四】DeepJDOT: Deep Joint Distribution OptimalTransport for Unsupervised Domain Adaptation

本文介绍了DeepJDOT,一种基于最优传输的无监督深度域适应方法,用于解决源域和目标域之间的数据分布不匹配问题。DeepJDOT通过联合优化深度特征和分类器,学习两个域的共享表示,同时保持判别信息,从而在目标域上取得良好性能。文章详细阐述了DeepJDOT的优化过程和随机梯度更新策略。
摘要由CSDN通过智能技术生成

前言

在这项工作中,我们探索了一种名为DeepJDOT的解决方案来解决域转移问题:通过测量基于最优传输的联合深度表示/标签的差异,我们不仅学习源域和目标域之间对齐的新数据表示,而且同时保留分类器使用的判别信息。

在JDOT中,作者提出在源中的类正则性约束下,使用离散最优传输来匹配两个域的偏移边缘分布。联合分布直接使用耦合 γ 对边缘和类条件分布共同移位进行对齐。但是,该方法有两个缺点:

1)JDOT方法规模很小,因为它必须解决n1×n2的耦合问题,其中n1和n2是要对齐的样本;

2) 计算输入空间之间的最佳传输耦合γ(并使用`2距离),这是一个很难对齐的表示,因为我们对匹配更多的语义表示感兴趣,这些语义表示本应简化分类器使用它们进行决策的工作。

DeepJDOT使用卷积神经网络(CNN)解决JDOT中两个问题所需的特性:

1)通过沿着CNN训练逐渐调整最优传输耦合,获得了可扩展的解决方案,即JDOT的近似和随机版本

2) 通过学习CNN深层中的耦合,对齐分类器用于决策的表示,这是类的更语义的表示。总之,我们在单个CNN框架中联合学习两个域和分类器之间的嵌入。我们使用基于最优传输的领域自适应定制损失函数,因此将我们的命题称为深度联合分布最优运输(DeepJDOT)。

提出的DeepJDOT使用了两个领域共享嵌入的概念,并建立在与基于MMD的方法类似的逻辑上,但为对齐添加了明确的判别成分:提出的Deep JDOT将表示和判别学习相关联,因为最优传输耦合确保分布匹配,而i)JDOT类损失执行源标签到目标样本的传播,以及ii)学习CNN的深层中的耦合的事实确保了辨别能力。

Optimal Transport

OT搜索使两个分布µ1和µ2之间产生最小位移成本的概率耦合γ∈π(µ1,µ2)

给定的成本函数c(x1,x2)测量样本x1和x2之间的相异性。其中π(µ1,µ2)描述了具有边缘µ1和µ2的联合概率分布的空间。在离散情况下(两种分布都是经验分布),这变成: 

其中F是Frobenius点积,C≥0是成本矩阵∈Rn1×n2,表示成对成本C(xi,xj),γ是具有规定的边距大小为n1×n的矩阵。这个优化问题的最小值可以用作分布之间的距离,并且,只要成本c是范数,它就被称为Wasserstein距离。

Joint Distribution Optimal Transport

联合分布最优传输(JDOT)方法,通过直接学习嵌入成本函数c中的分类器来防止两步自适应(即首先自适应表示,然后在自适应特征上学习分类器)。其基本思想是对齐联合特征/标签分布,而不是仅考虑特征分布。

对于第i个源元素和第j个目标元素,其中c(·,·)被选择为L2距离”,L(·,.)是分类损失(例如铰链或交叉熵)。参数α和λt是两个标量值,对距离项的贡献进行加权。由于目标标签y t j是未知的,它们被代理版本f(x t j)取代,该版本依赖于分类器f:X→ Y.分类损失的计算会导致以下最小化问题:

 

其中Df依赖于f,并且集合了所有的成对代价d(·,·)。共享共同表示和共同标签的样本(通过分类)被匹配,从而产生更好的区分。JDOT证明了最小化这个数量相当于最小化领域自适应问题的学习边界。然而,JDOT有两个主要缺点:i)在大型数据集上,γ的求解变得困难,因为γ的大小与样本数量成二次方;ii)成本c(xsi,xtj)在输入空间中作为图像上的平方欧几里得范数,并且可以是两个样本之间的相异性的无信息性的。

提出的DeepJDOT通过引入随机版本来解决这两个问题,该版本只计算CNN迭代过程中的小耦合,并且通过在CNN的深层语义表示之间而不是在图像空间中学习最优传输这一事实。 

图1。DeepJDOT方法概述。虽然特征提取器g和分类器f的结构由两个域共享,但它们被表示两次以区分这两个域。潜在表示和标签都用于计算每批全局损失函数中使用的耦合矩阵γ。 Proposed method

 Proposed method

 Deep Joint Distribution Optimal Transport(DeepJDOT)

如图1所示,DeepJDOT模型由两部分组成:嵌入函数g:x→ z、 其中输入被映射到潜在空间z,并且分类器f:z→ y、 其将潜在空间映射到目标域上的标签空间。潜在空间可以是由模型提供的任何特征层,在我们的情况下是CNN的倒数第二个完全连接层。DeepJDOT联合优化该特征空间和分类器,以提供一种在目标域上表现良好的方法。这个问题的解决方案可以通过最小化以下目标函数来实现:

其中ÿ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值