【最优传输论文六】Wasserstein Distance Guided Representation Learning for Domain Adaptation

WDGRL是一种基于Wasserstein Distance的领域适应方法,通过对抗性训练学习域不变特征表示。该方法通过估计源样本和目标样本之间的Wasserstein Distance,优化特征提取器以减小域间差异。WDGRL在情绪和图像分类自适应任务上表现出色,相比非对称方法,它通过投影到公共潜在空间学习对称的域不变特征。此外, WDGRRL可以与鉴别器结合,引入监督信号提升目标域的分类性能。
摘要由CSDN通过智能技术生成

本文将专栏中上一篇WGAN改造应用于DA

前言

受Wasserstein GAN的启发,本文提出了一种学习领域不变特征表示的新方法,即 Wasserstein Distance Guided Reprensentation Learning(WDGRL)。WDGRL利用由Domain Critic表示的神经网络来估计源样本和目标样本之间的经验Wasserstein距离,并优化特征提取器网络以对抗性方式最小化估计的Wasserstein距。通过迭代对抗性训练,最终学习了对域之间的协变量移动不变的特征表示。Wasserstein距离在域自适应方面的理论优势在于其梯度性质和有希望的推广界。对常见情绪和图像分类自适应数据集的实证研究表明,WDGRL优于最先进的领域不变表示学习方法。

WDGRL和以前的方法有明显的区别:之前工作是基于非对称特征的方法,基于最优传输设计从源表示到目标表示的转换,而WDGRL是一种对称方法,将两个域投影到一个公共的潜在空间来学习域不变特征。WDGRL可以集成到其他基于对称特征的自适应框架中。

Wasserstein Distance Guided Reprensentation Learning

Domain Invariant Representation Learning

整体结构

首先有一个特征提取器用来提取源域和目标域样本的特征,然后使用源域的数据训练一个Discriminator,然后用对抗的思想学习一个feature extractor和domain critic,WDGRL训练特征提取器提取域不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值