本文将专栏中上一篇WGAN改造应用于DA
前言
受Wasserstein GAN的启发,本文提出了一种学习领域不变特征表示的新方法,即 Wasserstein Distance Guided Reprensentation Learning(WDGRL)。WDGRL利用由Domain Critic表示的神经网络来估计源样本和目标样本之间的经验Wasserstein距离,并优化特征提取器网络以对抗性方式最小化估计的Wasserstein距。通过迭代对抗性训练,最终学习了对域之间的协变量移动不变的特征表示。Wasserstein距离在域自适应方面的理论优势在于其梯度性质和有希望的推广界。对常见情绪和图像分类自适应数据集的实证研究表明,WDGRL优于最先进的领域不变表示学习方法。
WDGRL和以前的方法有明显的区别:之前工作是基于非对称特征的方法,基于最优传输设计从源表示到目标表示的转换,而WDGRL是一种对称方法,将两个域投影到一个公共的潜在空间来学习域不变特征。WDGRL可以集成到其他基于对称特征的自适应框架中。
Wasserstein Distance Guided Reprensentation Learning
Domain Invariant Representation Learning
整体结构
首先有一个特征提取器用来提取源域和目标域样本的特征,然后使用源域的数据训练一个Discriminator,然后用对抗的思想学习一个feature extractor和domain critic,WDGRL训练特征提取器提取域不