深度学习中的Transformer模型具有以下常见结构:
- Transformer的Encoder-Decoder框架:这种框架包括一个编码器和一个解码器。编码器将输入编码为语义向量,解码器将语义向量解码为所需的输出。这种框架可以结合注意力机制,以计算输入向量与输出向量的相似度。
- BERT模型:BERT模型是一种基于Transformer的预训练语言模型,它通过对深层双向Transformer进行预训练,以便在各种NLP任务中取得优异的表现。BERT模型的基本结构包括输入嵌入层、位置编码器、多个Transformer编码器和输出层。
- XLNET模型:XLNET模型是一种基于Transformer的预训练语言模型,它结合了BERT和GPT的特点,通过使用置换语言建模(PLM)来提高性能。XLNET模型的基本结构包括输入嵌入层、位置编码器、多个Transformer编码器和输出层。
以上是Transformer模型的一些常见结构,不同的模型可能具有不同的细节和变种,但基本原理是相似的。
以上内容仅供参考,如需更多关于深度学习中Transformer的常见结构,建议咨询计算机科学专业人士或查阅相关论文资料。