深度学习中Transfomer的常见结构

本文介绍了深度学习中的Transformer模型,重点阐述了Encoder-Decoder框架,以及BERT和XLNET模型,强调了注意力机制在编码和解码过程中的作用。预训练语言模型在NLP任务中的应用也被提及,建议进一步研究或咨询专业人士获取详细信息。
摘要由CSDN通过智能技术生成

深度学习中的Transformer模型具有以下常见结构:

  1. Transformer的Encoder-Decoder框架:这种框架包括一个编码器和一个解码器。编码器将输入编码为语义向量,解码器将语义向量解码为所需的输出。这种框架可以结合注意力机制,以计算输入向量与输出向量的相似度。
  2. BERT模型:BERT模型是一种基于Transformer的预训练语言模型,它通过对深层双向Transformer进行预训练,以便在各种NLP任务中取得优异的表现。BERT模型的基本结构包括输入嵌入层、位置编码器、多个Transformer编码器和输出层。
  3. XLNET模型:XLNET模型是一种基于Transformer的预训练语言模型,它结合了BERT和GPT的特点,通过使用置换语言建模(PLM)来提高性能。XLNET模型的基本结构包括输入嵌入层、位置编码器、多个Transformer编码器和输出层。

以上是Transformer模型的一些常见结构,不同的模型可能具有不同的细节和变种,但基本原理是相似的。

以上内容仅供参考,如需更多关于深度学习中Transformer的常见结构,建议咨询计算机科学专业人士或查阅相关论文资料。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值