TensorRT 是 NVIDIA 开发的高性能深度学习推理优化器,专为 GPU 加速推理而设计。本文将全面介绍 TensorRT 的 Python API,通过丰富的示例代码展示如何在实际项目中使用 TensorRT 优化深度学习模型的推理性能。
一、TensorRT 基础与环境配置
1.1 安装 TensorRT
首先需要安装 TensorRT 及其依赖项。推荐通过 NVIDIA 官方提供的 pip 包进行安装:
# 安装TensorRT Python包
pip install nvidia-tensorrt
# 安装必要的依赖
pip install pycuda numpy opencv-python
1.2 验证安装
安装完成后,可以通过以下代码验证 TensorRT 是否正确安装:
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
print(f"TensorRT版本: {trt.__version__}")
print(f"CUDA版本: {cuda.get_version()}")
二、使用 TensorRT 优化 ONNX 模型
2.1 加载和构建 TensorRT 引擎
以下是一个完整的示