TensorRT之入门指南

TensorRT 是 NVIDIA 开发的高性能深度学习推理优化器,专为 GPU 加速推理而设计。本文将全面介绍 TensorRT 的 Python API,通过丰富的示例代码展示如何在实际项目中使用 TensorRT 优化深度学习模型的推理性能。

一、TensorRT 基础与环境配置

1.1 安装 TensorRT

首先需要安装 TensorRT 及其依赖项。推荐通过 NVIDIA 官方提供的 pip 包进行安装:

# 安装TensorRT Python包
pip install nvidia-tensorrt

# 安装必要的依赖
pip install pycuda numpy opencv-python
1.2 验证安装

安装完成后,可以通过以下代码验证 TensorRT 是否正确安装:

import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np

print(f"TensorRT版本: {trt.__version__}")
print(f"CUDA版本: {cuda.get_version()}")

二、使用 TensorRT 优化 ONNX 模型

2.1 加载和构建 TensorRT 引擎

以下是一个完整的示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亿只小灿灿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值