支持ChatGPT与Grok的对话导出为Markdown文本的插件

之前发过这篇文章,现在添加了支持Grok对话内容的基本无损导出为Markdown,所以后面的文案就不再重复写了,grok网站为:https://grok.com/

  • Google插件名称为:ChatGPT to MarkDown plus, 下载地址为ChatGPT to MarkDown plus
  • 使用方法:见GitHub主页或插件介绍页面
  • https://github.com/thisisbaiy/ChatGPT-To-Markdown-google-plugin/tree/main
    我将源代码上传至了GitHub,欢迎star, Issue
  • 下面是一些简介:支持代码,公式,链接的完整导出在Typora完美显示!

Chatgpt dialog Export to Markdown File

简介:

这个 Chrome 插件旨在帮助用户将 ChatGPT 网站上的聊天记录导出为标准的 Markdown 格式,使其更容易阅读和编辑。

功能:

  • 可以实现代码,公式,链接的完整导出,并且以标准的markdown格式显示!
  • 标准格式: 以标准的 Markdown 格式显示导出的内容,确保兼容性和易读性。

Typora 兼容性:

特别优化以确保导出的 Markdown 文件可以在 Typora 等 Markdown 编辑器中正确打开和显示。

通过这个插件,用户可以轻松地将 ChatGPT 网站上的聊天记录转换为 Markdown 格式,从而更方便地分享、编辑和存档他们的对话。


Introduction:

This Chrome extension aims to help users export chat records from the ChatGPT website into standard Markdown format, making them easier to read and edit.

Features:

  • Complete export of codes, formulas, links, and other content from chat records.
  • Standard Format: Display exported content in standard Markdown format, ensuring compatibility and readability.

Typora Compatibility:

  • Specially optimized to ensure that exported Markdown files can be correctly opened and displayed in Typora and other Markdown editors.

With this extension, users can effortlessly convert chat records from the ChatGPT website into Markdown format, making it more convenient to share, edit, and archive their conversations.


Step 1:

Download respository

Step2:

在这里插入图片描述

Select the repository folder and click to conform.

Step3:

When you open chatgpt website, you’ll see the Export Chat button
在这里插入图片描述

Select the chat you want to export, then click the green botton, you’ll get the .md file, which can be opened by Typora just like the image below:

Result:
在这里插入图片描述
在这里插入图片描述

当然可以,这里是一个简化的例子,我们将使用Python的`sklearn`库,结合`matplotlib`进行数据可视化,`scikit-learn.metrics`库来生成混淆矩阵ROC曲线以及AUC值。假设我们已经有了一个预训练的分类模型(例如SVM或者随机森林)和测试数据: ```python # 导入必要的库 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import confusion_matrix, roc_curve, auc # 加载鸢尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 数据分割和预处理 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 训练模型 model = SVC(probability=True) model.fit(X_train, y_train) # 预测并计算混淆矩阵 y_pred = model.predict(X_test) conf_mat = confusion_matrix(y_test, y_pred) print("Confusion Matrix:\n", conf_mat) # ROC曲线和AUC y_scores = model.predict_proba(X_test)[:, 1] # 获取正类的概率预测 fpr, tpr, _ = roc_curve(y_test, y_scores) roc_auc = auc(fpr, tpr) plt.figure() plt.plot(fpr, tpr, label=f"ROC curve (area = {roc_auc:.2f})") plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC)') plt.legend(loc="lower right") plt.show() ``` 在这个例子中,我们首先创建了一个SVM分类器,并用训练数据拟合它。然后,对测试数据进行预测,得到分类结果和对应的概率得分。接着,利用这些得分计算混淆矩阵、绘制ROC曲线,并计算其面积(AUC)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值