一、TinyMaix 介绍
TinyMaix是国内sipeed团队开发一个面向MCU单片机的轻量级AI推理框架,以下是官方介绍:
TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意单片机上运行轻量级深度学习模型。
关键特性
- 核心代码少于 400行(
tm_layers.c
+tm_model.c
+arch_cpu.h
), 代码段(.text)少于3KB- 低内存消耗,甚至 Arduino ATmega328 (32KB Flash, 2KB Ram) 都能基于 TinyMaix 跑 mnist(手写数字识别)
- 支持 INT8/FP32/FP16 模型,实验性地支持 FP8 模型,支持 keras h5 或 tflite 模型转换
- 支持多种芯片架构的专用指令优化: ARM SIMD/NEON/MVEI,RV32P, RV64V
- 友好的用户接口,只需要 load/run 模型~
- 支持全静态的内存配置(无需 malloc )
- 即将支持 MaixHub 在线模型训练
1.1TinyMaix可以简单理解为一个矩阵和向量计算库,目前已支持如下几种计算硬件: