Pytorch实现InceptionV1,小白必看

out = torch.cat([out1, out2, out3, out4], dim=1)

return out

class InceptionAux(nn.Module):

def init(self, in_channels,out_channels):

super(InceptionAux, self).init()

self.auxiliary_avgpool = nn.AvgPool2d(kernel_size=5, stride=3)

self.auxiliary_conv1 = ConvBNReLU(in_channels=in_channels, out_channels=128, kernel_size=1)

self.auxiliary_linear1 = nn.Linear(in_features=128 * 4 * 4, out_features=1024)

self.auxiliary_relu = nn.ReLU6(inplace=True)

self.auxiliary_dropout = nn.Dropout(p=0.7)

self.auxiliary_linear2 = nn.Linear(in_features=1024, out_features=out_channels)

def forward(self, x):

x = self.auxiliary_conv1(self.auxiliary_avgpool(x))

x = x.view(x.size(0), -1)

x= self.auxiliary_relu(self.auxiliary_linear1(x))

out = self.auxiliary_linear2(self.auxiliary_dropout(x))

return out

class InceptionV1(nn.Module):

def init(self, num_classes=1000, stage=‘train’):

super(InceptionV1, self).init()

self.stage = stage

self.block1 = nn.Sequential(

nn.Conv2d(in_channels=3,out_channels=64,kernel_size=7,stride=2,padding=3),

nn.BatchNorm2d(64),

nn.MaxPool2d(kernel_size=3,stride=2, padding=1),

nn.Conv2d(in_channels=64, out_channels=64, kernel_size=1, stride=1),

nn.BatchNorm2d(64),

)

self.block2 = nn.Sequential(

nn.Conv2d(in_channels=64, out_channels=192, kernel_size=3, stride=1, padding=1),

nn.BatchNorm2d(192),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

)

self.block3 = nn.Sequential(

InceptionV1Module(in_channels=192,out_channels1=64, out_channels2reduce=96, out_channels2=128, out_channels3reduce = 16, out_channels3=32, out_channels4=32),

InceptionV1Module(in_channels=256, out_channels1=128, out_channels2reduce=128, out_channels2=192,out_channels3reduce=32, out_channels3=96, out_channels4=64),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

)

self.block4_1 = InceptionV1Module(in_channels=480, out_channels1=192, out_channels2reduce=96, out_channels2=208,out_channels3reduce=16, out_channels3=48, out_channels4=64)

if self.stage == ‘train’:

self.aux_logits1 = InceptionAux(in_channels=512,out_channels=num_classes)

self.block4_2 = nn.Sequential(

InceptionV1Module(in_channels=512, out_channels1=160, out_channels2reduce=112, out_channels2=224,

out_channels3reduce=24, out_channels3=64, out_channels4=64),

InceptionV1Module(in_channels=512, out_channels1=128, out_channels2reduce=128, out_channels2=256,

out_channels3reduce=24, out_channels3=64, out_channels4=64),

InceptionV1Module(in_channels=512, out_channels1=112, out_channels2reduce=144, out_channels2=288,

out_channels3reduce=32, out_channels3=64, out_channels4=64),

)

if self.stage == ‘train’:

self.aux_logits2 = InceptionAux(in_channels=528,out_channels=num_classes)

self.block4_3 = nn.Sequential(

InceptionV1Module(in_channels=528, out_channels1=256, out_channels2reduce=160, out_channels2=320,

out_channels3reduce=32, out_channels3=128, out_channels4=128),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

)

self.block5 = nn.Sequential(

InceptionV1Module(in_channels=832, out_channels1=256, out_channels2reduce=160, out_channels2=320,out_channels3reduce=32, out_channels3=128, out_channels4=128),

InceptionV1Module(in_channels=832, out_channels1=384, out_channels2reduce=192, out_channels2=384,out_channels3reduce=48, out_channels3=128, out_channels4=128),

)

self.avgpool = nn.AvgPool2d(kernel_size=7,stride=1)

self.dropout = nn.Dropout(p=0.4)

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频

如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
img

2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频

如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
[外链图片转存中…(img-nAbtt5Ae-1711068655409)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值