神经网络与深度学习课程总结(3)

一、评价指标

1. 基本概念

在深度学习视觉应用中,正确评估模型性能是至关重要的。以下是几个关键指标和概念:

  • 真正例 (TP): 实际为正例且被正确分类为正例的样本数量。
  • 假正例 (FP): 实际为负例但被错误分类为正例的样本数量。
  • 假负例 (FN): 实际为正例但被错误分类为负例的样本数量。
  • 真负例 (TN): 实际为负例且被正确分类为负例的样本数量。

2. 混淆矩阵与评价指标

混淆矩阵是评估分类模型性能的一个重要工具,通过它可以直观地表示分类结果。

主要性能指标

  • 精确率 (Precision): 表示被分类器正确识别的正例占所有被识别为正例的比例,计算公式为:
    P = T P T P + F P P = \frac{TP}{TP + FP} P=TP+FPTP
  • 召回率 (Recall): 表示被分类器正确识别的正例占所有实际正例的比例,计算公式为:
    R = T P T P + F N R = \frac{TP}{TP + FN} R=TP+FNTP
  • 准确率 (Accuracy): 表示分类器正确分类的样本占总样本的比例,计算公式为: t e x t A c c u r a c y = T P + T N T P + F P + T N + F N text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN} textAccuracy=TP+FP+TN+FNTP+TN

3. P-R 曲线

P-R 曲线展示了精确率和召回率之间的关系。通常情况下,精确率的提高伴随着召回率的降低。

4. AP与mAP

  • AP (Average Precision): 表示在不同召回率水平下精确率的平均值,常用于单个类别的评估。
  • mAP (mean Average Precision): 是多个类别AP的平均值,常用于多类别的目标检测。

5. 置信度调整

通过调整分类阈值,可以改变模型的精确率和召回率,这影响模型的整体性能评估。

二、目标检测与YOLO网络

1. 目标检测概述

目标检测是计算机视觉中的一个核心任务,它涉及到在图像中识别和定位一个或多个目标。与图像分类不同,目标检测不仅需要判断图像中有哪些对象,还需要确定它们的位置和大小。

主要问题

  • 目标可能以任何大小出现在图像中。
  • 目标可能有各种不同的形状和姿态。
  • 目标之间可能存在遮挡。

2. YOLO (You Only Look Once)

YOLO是一个流行的目标检测框架,由Joseph Redmon等人提出。它的核心思想是通过单个卷积神经网络同时预测多个边界框和类别概率。

YOLO架构

YOLO将图像分割成一个 S × S S\times S S×S的网格,并且每个网格预测 B B B个边界框,每个边界框包含5个预测: x , y , w , h x, y, w, h x,y,w,h和置信度(confidence)。置信度反映了模型对边界框包含目标的确信度和这个边界框的准确性。

边界框预测

边界框的宽度和高度通过下面的公式预测,这些预测是相对于整个图像的:
w = p w e t w , h = p h e t h w = p_w e^{t_w}, \quad h = p_h e^{t_h} w=pwetw,h=pheth
其中, ( t w , t h ) (t_w, t_h) (tw,th)是网络的输出, ( p w , p h ) (p_w, p_h) (pw,ph)是预设的边界框宽度和高度。

位置 ( x , y ) (x, y) (x,y)的预测是相对于每个网格单元的,使用sigmoid函数确保输出在0到1之间:
x = σ ( t x ) + c x , y = σ ( t y ) + c y x = \sigma(t_x) + c_x, \quad y = \sigma(t_y) + c_y x=σ(tx)+cx,y=σ(ty)+cy
这里, ( c x , c y ) (c_x, c_y) (cx,cy)是网格单元的左上角坐标。

置信度计算

置信度定义为Pr(Object) * IOU(pred, truth),如果没有对象,置信度为0。如果有对象,置信度是预测的边界框与实际边界框的交并比(IOU)。

损失函数

YOLO使用一个复合损失函数,结合了坐标损失、置信度损失和类别损失:
Loss = λ coord ∑ i = 0 S 2 ∑ j = 0 B 1 i j obj [ ( x i − x ^ i ) 2 + ( y i − y ^ i ) 2 ] + λ conf ∑ i = 0 S 2 ∑ j = 0 B 1 i j obj ( Conf i − Conf ^ i ) 2 + ∑ i = 0 S 2 1 i obj ∑ c ∈ classes ( p i ( c ) − p ^ i ( c ) ) 2 \text{Loss} = \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{\text{obj}} [(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2] + \lambda_{\text{conf}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{\text{obj}} (\text{Conf}_i - \hat{\text{Conf}}_i)^2 + \sum_{i=0}^{S^2} 1_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 Loss=λcoordi=0S2j=0B1ijobj[(xix^i)2+(yiy^i)2]+λconfi=0S2j=0B1ijobj(ConfiConf^i)2+i=0S21iobjcclasses(pi(c)p^i(c))2
其中, 1 i j obj 1_{ij}^{\text{obj}} 1ijobj表示第 i i i个网格单元中第 j j j个边界框负责预测对象。

3. YOLO版本演变

YOLO经过多个版本的迭代,每个版本都在速度和准确度上有所提升。从YOLOv1到YOLOv4,每一步都通过改进网络架构、使用更好的训练技术或更复杂的后处理技术来增强性能。

4. 实际应用

YOLO广泛应用于实时视频分析、无人驾驶车辆的物体检测、安防系统等领域,因为它能在保持较高准确率的同时,提供足够快的检测速度以满足实时处理的需求。

三、语义分割

1. 语义分割概述

语义分割是计算机视觉中的一项重要任务,它旨在将图像分割成几个具有特定语义的区域。不同于目标检测,语义分割不仅识别图像中的对象,还精确地标出每个对象的边界至像素级别。

2. 语义分割的关键挑战

  • 高精度:需要在像素级别上正确标注每个类别。
  • 对象类别多样性:在自然场景中可能出现大量不同的对象类别。
  • 尺寸变化:同一类别的对象在图像中可能以不同的尺寸出现。
  • 视角和遮挡:对象可能因视角不同或被其他对象遮挡而难以识别。

3. 常用语义分割模型

FCN (Fully Convolutional Network)

FCN是最早用于语义分割的全卷积网络,它通过替换传统CNN中的全连接层为卷积层,实现了端到端的学习。

FCN架构特点
  • 上采样:使用转置卷积层(deconvolution)来上采样低分辨率的特征图,恢复到输入图像的尺寸。
  • 跳跃连接:融合不同层的特征,以保留更多的位置信息和上下文信息。

U-Net

另一个广泛使用的网络是U-Net,它特别适用于医学图像分割。U-Net结构包括一个收缩路径来捕获上下文和一个对称的扩展路径,用于精确的定位。

U-Net特点
  • 对称性:使网络能够在深层捕获的上下文信息和表面的精细细节之间建立精确对应关系。
  • 数据增强:通过对训练图像进行弹性变形,U-Net能有效地利用其数据来学习更丰富的特征,对于数据较少的应用场景尤其有用。

4. 评估指标

在语义分割中,通常使用以下指标来评估模型性能:

  • 像素准确率 (Pixel Accuracy): 计算正确分类的像素数与总像素数的比例。
  • IoU (Intersection over Union): 也称为Jaccard Index,是预测区域和真实区域的交集与并集的比例。
  • Dice Coefficient: 通常用于医学图像,与IoU相似,但给予交集的两倍权重。

5. 实际应用

语义分割广泛应用于自动驾驶车辆、机器人视觉、医疗图像分析等领域。在自动驾驶中,通过语义分割可以识别道路、行人、车辆等,这对于路径规划和决策至关重要。

6. 技术发展趋势

随着深度学习技术的进步,语义分割的准确度和效率持续提高。当前和未来的研究集中在提升模型的泛化能力、处理大规模场景的能力及实时处理速度。

四、风格迁移

1. 风格迁移概述

风格迁移是一种利用神经网络将一幅图像的风格应用到另一幅图像的技术,同时保留后者的内容。这一技术使得创造艺术性的图像变得自动化和高效。

2. 关键概念

  • 内容图像(Content Image):需要保留其内容的目标图像。
  • 风格图像(Style Image):提供风格特征的图像。
  • 合成图像(Synthesized Image):最终生成的图像,结合了内容图像的内容和风格图像的艺术风格。

3. 主要技术

3.1 神经风格迁移

神经风格迁移的过程涉及使用卷积神经网络(CNN)提取风格图像和内容图像的特征,并通过优化一个合成图像来最小化风格和内容的损失。

3.2 损失函数

风格迁移中使用的损失函数包含三个部分:

  • 内容损失(Content Loss):度量合成图像和内容图像在内容上的差异。
  • 风格损失(Style Loss):度量合成图像和风格图像在风格上的差异。
  • 总变差损失(Total Variation Loss):用于增加合成图像的空间连续性,从而减少图像噪声。
内容损失

L content ( p ⃗ , x ⃗ , l ) = 1 2 ∑ i , j ( F i j l − P i j l ) 2 L_{\text{content}}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i, j} (F_{ij}^l - P_{ij}^l)^2 Lcontent(p ,x ,l)=21i,j(FijlPijl)2
其中, F i j l F_{ij}^l Fijl P i j l P_{ij}^l Pijl 分别是合成图像和内容图像在层 l l l 的特征表示。

风格损失

L style ( a ⃗ , x ⃗ ) = ∑ l = 0 L w l E l L_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l Lstyle(a ,x )=l=0LwlEl
其中, E l E_l El 是层 l l l 的风格重建误差,计算方法如下:
E l = 1 4 N l 2 M l 2 ∑ i , j ( G i j l − A i j l ) 2 E_l = \frac{1}{4N_l^2M_l^2} \sum_{i,j} (G_{ij}^l - A_{ij}^l)^2 El=4Nl2Ml21i,j(GijlAijl)2
G i j l G_{ij}^l Gijl 是合成图像的格拉姆矩阵, A i j l A_{ij}^l Aijl 是风格图像的格拉姆矩阵。

3.3 优化过程

使用梯度下降方法优化合成图像,从而最小化总损失:
L total = α L content + β L style L_{\text{total}} = \alpha L_{\text{content}} + \beta L_{\text{style}} Ltotal=αLcontent+βLstyle
其中, α \alpha α β \beta β 是控制内容和风格重要性的权重参数。

4. 应用

风格迁移不仅在艺术创作中有应用,在设计、广告、媒体和娱乐行业也越来越受欢迎。

5. 技术挑战与发展

虽然风格迁移技术已取得显著进展,但如何实现实时风格迁移、提高分辨率和优化算法效率仍是研究的热点。

  • 16
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值