YOLO(二)

本文介绍了YOLOv1作为经典的one-stage检测模型,其使用CNN网络解决坐标(x,y,w,h)问题,尽管Map值不高但具有高FPS和灵活性。文章详细阐述了模型结构,特别是7x7输出和30个值的处理方式,同时也指出了框内物体重叠和种类识别的局限性。
摘要由CSDN通过智能技术生成

YOLOv1

是最经典的one-stage模型,就是找到x,y,w,h四个坐标,所以一个CNN网络就可以解决了

YOLO比cnn,虽然Map值不是很高但FPS更高更灵活

具体思路就是,

有这样的整体架构,在其中呢,只能输入448*448*3然后经过卷积网络形成7*7*30

这个7*7代表的是输出的结果,30表示的是每一个格子代表的值。这个确定的点的位置是由30里面前10个位置确定的5+5表示的是X1Y1W1H1C1,X2Y2W2H2C2表示的就是经由损失值函数计算过后的最有可能的两个矩形来确定的点

缺点很明显,如果框内是两个很近的不同的物品无法检测,如果是同一个物品的不同品种无法检测,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值