看脸就能预测性取向、犯罪指数、遗传病

据悉,全球约有 8% 的人患有遗传疾病(照这个比例算,中国有一亿多人),其中许多可以通过面部特征识别。像患有胎儿酒精综合征的婴儿,面部特征就体现在眼睛小、人中平滑、上唇较薄。

图片

这眼睛真的小么…这不就和中医「望闻问切」中的「望」是一个道理么~

因此,美国 FDNA 分析技术公司研究人员亚龙-古罗维奇及其同事,使用了包含 200 多种遗传综合征数据库中的 1.7 万张患者面部图像,训练出了一种名为 DeepGestalt 的深度学习算法,它能够分辨出数百种遗传综合征的面部表征。

图片

之后的测试中,该算法在 502 张不同的图像上,识别出正确综合征的准确率达到了 91%,远远超出临床专家在另外三个实验中的表现。亚龙-古罗维奇认为,他们的工作提高了标准化描述遗传疾病特征的能力,为未来的研究和应用打开了大门,也有助于新型遗传疾病的鉴定。

嗯,他扫我一眼就知道我有穷病…

图片

然而,该算法也有一个很严重的问题,FDNA 最新研究的作者指出,由于人脸图像是敏感且容易获取的数据,若使用不慎,看脸识病技术将引发歧视等伦理问题。

打个比方,有人拿着你的照片,用这个算法测出你可能患有XX遗传病,同时这个人是个大嘴巴,喜欢到处乱传,那你身边的同事、朋友会怎么想?会不会有人用别样的眼光看待你?

2 - 「AI看脸」引发的争议

其实,这不是「AI看脸」第一次引起争议了,之前就有过「AI看脸识性取向」和「AI看脸识罪犯」等前车之鉴。之前,斯坦福大学心理学家 Michal Kosinski,通过 AI 研究从交友网站的公开信息中收集到的 35326 张照片,找到了同性恋人群与异性恋人群之间的面部差异:

图片

上排左侧为直男,右侧为gay

下排左侧为直女,右侧为les

之后的测试中,在没有穿搭风格、人物动作等因素影响的情况下,就单一面部信息而言,AI 识别男女性取向的准确率分别达到了 81% 和 71%…如果识别的是泰国人妖呢~

但是,这项研究却遭到了来自学界同行和大众的各种质疑。首先,性取向是一个人的隐私,AI 强行根据你的脸算出你的性取向,本质上冒犯了当事人对自己身份的保有权。

至于「AI看脸识罪犯」,这是在2016年,由上海交通大学教授武筱林提出,他训练出了可以看脸识罪犯的人工智能系统,准确率达到 86% 以上。

显然,这项研究引起的争议要远远大于前两者,因为对于「审判」这种人命关天的事情来说,86% 的准确率根本无法让人信服,更别提这项技术一旦实施,可能造成极其严重的潜在后果。

图片

很多业内专家都表示,建议武教授撤稿,并且上传一封公告,为不恰当的研究方法致歉。

3 -  被滥用的可怕后果

为什么「AI看脸」会引起如此大的争议?借用一位网友的评论:它是用一种「科学」的方式,简单粗暴的给人们贴上了标签。

小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Java工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Java开发全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频

如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注Java)
img

Java核心架构进阶知识点

面试成功其实都是必然发生的事情,因为在此之前我做足了充分的准备工作,不单单是纯粹的刷题,更多的还会去刷一些Java核心架构进阶知识点,比如:JVM、高并发、多线程、缓存、Spring相关、分布式、微服务、RPC、网络、设计模式、MQ、Redis、MySQL、设计模式、负载均衡、算法、数据结构、kafka、ZK、集群等。而这些也全被整理浓缩到了一份pdf——《Java核心架构进阶知识点整理》,全部都是精华中的精华,本着共赢的心态,好东西自然也是要分享的

image

image

image

内容颇多,篇幅却有限,这就不在过多的介绍了,大家可根据以上截图自行脑补

[外链图片转存中…(img-uNL5OiDT-1710429117119)]

[外链图片转存中…(img-NgX1JlwY-1710429117119)]

内容颇多,篇幅却有限,这就不在过多的介绍了,大家可根据以上截图自行脑补

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值