最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
2、如何自定义数据集加载方式?
3、如何使用Cutout数据增强?
4、如何使用Mixup数据增强。
5、如何实现训练和验证。
6、预测的两种写法。
MobileNetV1的论文翻译:【第26篇】MobileNets:用于移动视觉应用的高效卷积神经网络_AI浩-CSDN博客
MobileNetV1解析:
mobileNetV1网络解析,以及实现(pytorch)_AI浩-CSDN博客
Keras版本:
MobileNet实战:tensorflow2.X版本,MobileNetV1图像分类任务(大数据集)_AI浩-CSDN博客
===========================================================================
为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:
pip install torchtoolbox
Cutout实现,在transforms中。
from torchtoolbox.transform import Cutout
数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
Cutout(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
Mixup实现,在train方法中。需要导入包:from torchtoolbox.tools import mixup_data, mixup_criterion
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
data, labels_a, labels_b, lam = mixup_data(data, target, alpha)
optimizer.zero_grad()
output = model(data)
loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)
loss.backward()
optimizer.step()
print_loss = loss.data.item()
===============================================================
MobileNetV1_demo
├─data
│ └─train
│ ├─Black-grass
│ ├─Charlock
│ ├─Cleavers
│ ├─Common Chickweed
│ ├─Common wheat
│ ├─Fat Hen
│ ├─Loose Silky-bent
│ ├─Maize
│ ├─Scentless Mayweed
│ ├─Shepherds Purse
│ ├─Small-flowered Cranesbill
│ └─Sugar beet
├─dataset
│ └─dataset.py
└─models
│ └─mobilenetV1.py
├─train.py
├─test1.py
└─test.py
===================================================================
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from dataset.dataset import SeedlingData
from torch.autograd import Variable
from Model.mobilenetv1 import MobileNetV1
from torchtoolbox.tools import mixup_data, mixup_criterion
from torchtoolbox.transform import Cutout
=================================================================
设置学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。建议使用GPU,CPU太慢了。
设置全局参数
modellr = 1e-4
BATCH_SIZE = 16
EPOCHS = 300
DEVICE = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)
===================================================================
数据处理比较简单,加入了Cutout、做了Resize和归一化。
数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
Cutout(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
===============================================================
将数据集解压后放到data文件夹下面,如图:
然后我们在dataset文件夹下面新建 init.py和dataset.py,在datasets.py文件夹写入下面的代码:
coding:utf8
import os
from PIL import Image
from torch.utils import data
from torchvision import transforms as T
from sklearn.model_selection import train_test_split
Labels = {‘Black-grass’: 0, ‘Charlock’: 1, ‘Cleavers’: 2, ‘Common Chickweed’: 3,
‘Common wheat’: 4, ‘Fat Hen’: 5, ‘Loose Silky-bent’: 6, ‘Maize’: 7, ‘Scentless Mayweed’: 8,
‘Shepherds Purse’: 9, ‘Small-flowered Cranesbill’: 10, ‘Sugar beet’: 11}
class SeedlingData (data.Dataset):
def init(self, root, transforms=None, train=True, test=False):
“”"
主要目标: 获取所有图片的地址,并根据训练,验证,测试划分数据
“”"
self.test = test
self.transforms = transforms
if self.test:
imgs = [os.path.join(root, img) for img in os.listdir(root)]
self.imgs = imgs
else:
imgs_labels = [os.path.join(root, img) for img in os.listdir(root)]
imgs = []
for imglable in imgs_labels:
for imgname in os.listdir(imglable):
imgpath = os.path.join(imglable, imgname)
imgs.append(imgpath)
trainval_files, val_files = train_test_split(imgs, test_size=0.3, random_state=42)
if train:
self.imgs = trainval_files
else:
self.imgs = val_files
def getitem(self, index):
“”"
一次返回一张图片的数据
“”"
img_path = self.imgs[index]
img_path=img_path.replace(“\”,‘/’)
if self.test:
label = -1
else:
labelname = img_path.split(‘/’)[-2]
label = Labels[labelname]
data = Image.open(img_path).convert(‘RGB’)
data = self.transforms(data)
return data, label
def len(self):
return len(self.imgs)
说一下代码的核心逻辑:
第一步 建立字典,定义类别对应的ID,用数字代替类别。
第二步 在__init__里面编写获取图片路径的方法。测试集只有一层路径直接读取,训练集在train文件夹下面是类别文件夹,先获取到类别,再获取到具体的图片路径。然后使用sklearn中切分数据集的方法,按照7:3的比例切分训练集和验证集。
第三步 在__getitem__方法中定义读取单个图片和类别的方法,由于图像中有位深度32位的,所以我在读取图像的时候做了转换。
然后我们在train.py调用SeedlingData读取数据 ,记着导入刚才写的dataset.py(from dataset.dataset import SeedlingData)
dataset_train = SeedlingData(‘data/train’, transforms=transform, train=True)
dataset_test = SeedlingData(“data/train”, transforms=transform_test, train=False)
读取数据
print(dataset_train.imgs)
导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
===============================================================
-
设置loss函数为nn.CrossEntropyLoss()。
-
设置模型为MobileNetV1,num_classes设置为12。
-
优化器设置为adam。
-
学习率调整策略选择为余弦退火。
实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model_ft = MobileNetV1(num_classes=12)
model_ft.to(DEVICE)
选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,T_max=20,eta_min=1e-9)
====================================================================
定义训练过程
alpha=0.2
def train(model, device, train_loader, optimizer, epoch):
model.train()
sum_loss = 0
total_num = len(train_loader.dataset)
print(total_num, len(train_loader))
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
data, labels_a, labels_b, lam = mixup_data(data, target, alpha)
optimizer.zero_grad()
output = model(data)
loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)
loss.backward()
optimizer.step()
lr = optimizer.state_dict()[‘param_groups’][0][‘lr’]
print_loss = loss.data.item()
sum_loss += print_loss
if (batch_idx + 1) % 10 == 0:
print(‘Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}’.format(
epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
-
- (batch_idx + 1) / len(train_loader), loss.item(),lr))
ave_loss = sum_loss / len(train_loader)
print(‘epoch:{},loss:{}’.format(epoch, ave_loss))
ACC=0
验证过程
def val(model, device, test_loader):
global ACC
model.eval()
test_loss = 0
correct = 0
total_num = len(test_loader.dataset)
print(total_num, len(test_loader))
with torch.no_grad():
for data, target in test_loader:
data, target = Variable(data).to(device), Variable(target).to(device)
output = model(data)
loss = criterion(output, target)
_, pred = torch.max(output.data, 1)
correct += torch.sum(pred == target)
print_loss = loss.data.item()
test_loss += print_loss
correct = correct.data.item()
acc = correct / total_num
avgloss = test_loss / len(test_loader)
print(‘\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n’.format(
avgloss, correct, len(test_loader.dataset), 100 * acc))
if acc > ACC:
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!