直线/圆切割二维平面&&平面/球面切割三维空间

二维平面切分问题

直线切割

无直线: f ( 0 ) = 1 f(0)=1 f(0)=1;
1条直线: f ( 1 ) = 2 f(1)=2 f(1)=2;
2条直线: f ( 2 ) = 4 f(2)=4 f(2)=4;
3条直线·: f ( 3 ) = 7 f(3)=7 f(3)=7;

–> 每次新加入一条直线,最多被前面所有直线都切割;加入第n条时,最多被切(n-1)次,被切割成n段,平面增加n个: f ( n ) = f ( n − 1 ) + n f(n)=f(n-1)+n f(n)=f(n1)+n;

f(n) = f(n-1) + n
     = f(n-2) + (n-1) + n
      ......
     = f(1) + 2 + 3 ... + n
   	 = 1 + 1 + 2 + 3 ... + n
     = 1 + (n + 1) n / 2

P.S.:待定系数法
二次相关,设 f ( x ) = a ∗ x 2 + b ∗ x + c , f(x)=a*x^2+b*x+c, f(x)=ax2+bx+c,代入 f ( 0 ) , f ( 1 ) , f ( 2 ) f(0), f(1), f(2) f(0),f(1),f(2)可得 f ( x ) = 1 / 2 ∗ x 2 + 1 / 2 ∗ x + 1 f(x)=1/2*x^2+1/2*x+1 f(x)=1/2x2+1/2x+1


圆切割

无圆: g ( 0 ) = 1 g(0)=1 g(0)=1;
1个圆: g ( 1 ) = 2 g(1)=2 g(1)=2;
2个圆: g ( 2 ) = 4 g(2)=4 g(2)=4;
3个圆: g ( 3 ) = 8 g(3)=8 g(3)=8;

–> 每次新加入一个圆,最多与前面所有圆都有两个交点;加入第n个时,最多被切割成 2 ∗ ( n − 1 ) 2*(n-1) 2(n1)段,平面增加 2 ∗ ( n − 1 ) 2*(n-1) 2(n1)个: g ( n ) = g ( n − 1 ) + 2 ∗ ( n − 1 ) g(n)=g(n-1)+2*(n-1) g(n)=g(n1)+2(n1);

g(n) = g(n-1) + 2*(n-1)
	 = g(n-2) + 2*(n-2) + 2*(n-1)
	 ......
	 = g(1) + 2 + 4 ... + 2*(n-1)
	 = 2 + 2 + 4 ... + 2*(n-1)
	 = 2 + (n-1) *n

P.S.:待定系数法
二次相关,设 g ( x ) = a ∗ x 2 + b ∗ x + c , g(x)=a*x^2+b*x+c, g(x)=ax2+bx+c,代入 g ( 0 ) , g ( 1 ) , g ( 2 ) g(0), g(1), g(2) g(0),g(1),g(2)可得 f ( x ) = x 2 − x + 2 f(x)=x^2-x+2 f(x)=x2x+2


圆和直线切割

假设平面上现在已经有将平面切割成g(m)块的m个圆形,我们在此基础上再考虑添加直线:

h ( 0 ) = g ( m ) = m 2 − m + 2 h(0)=g(m)=m^2-m+2 h(0)=g(m)=m2m+2

每次加入一条直线,让直线和每一个圆都相交,那么会产生2m个交点,会将直线分为2m-1个线段和2条射线,一共将会新增加2m个部分,也就是说每一条直线加入只考虑被原有的圆形切割的话都会新增加2m个部分:

h ( 1 ) = h ( 0 ) + 2 ∗ m = 2 + ( m − 1 ) ∗ m + 2 ∗ m h(1) = h(0) + 2*m = 2 + (m-1) *m + 2*m h(1)=h(0)+2m=2+(m1)m+2m;

加入第二条直线,因被所有圆切割而增加2*m个部分,因被前一条直线切割而增加2个部分:

h ( 2 ) = h ( 1 ) + ( 2 m + 2 ) h(2) = h(1) + (2m + 2) h(2)=h(1)+(2m+2);

以此类推:

h(n) = h(n-1) + (2*m+n)
	 = h(n-2) + (2*m+(n-1)) + (2*m+n)
	 ......
	 = h(1) + (2*m+(2)) ... + (2*m+n)
	 = (2 + (m-1) *m) + (2m*n) + 2 + 3 ... + n
	 = m*m - m + 2m*n + 1 + n*(n+1) / 2

三维空间切割问题

平面切割空间

无平面: F ( 0 ) = 1 F(0)=1 F(0)=1;
1个平面: F ( 1 ) = 2 F(1)=2 F(1)=2;
2个平面: F ( 2 ) = 4 F(2)=4 F(2)=4;
3个平面: F ( 3 ) = 8 F(3)=8 F(3)=8;

–> 每次新加入一个平面,最多与前面所有平面都相交;加入第n个时,最多在第n个平面上形成(n-1)条交线,这(n-1)条交线最多可形成f(n-1)个新空间:

F ( n ) = F ( n − 1 ) + f ( n − 1 ) F(n)=F(n-1)+f(n-1) F(n)=F(n1)+f(n1)

= F ( n − 2 ) + f ( n − 2 ) + f ( n − 1 ) =F(n-2)+f(n-2)+f(n-1) =F(n2)+f(n2)+f(n1)

……

= F ( 1 ) + =F(1)+ =F(1)+ ∑ i = 1 n − 1 f ( i ) \sum_{i=1}^{n-1}f(i) i=1n1f(i)

= F ( 1 ) + 1 / 2 ∗ ( ∑ i = 1 n − 1 i 2 + ∑ i = 1 n − 1 i ) + ( n − 1 ) =F(1)+1/2*(\sum_{i=1}^{n-1} i^2+\sum_{i=1}^{n-1} i)+(n-1) =F(1)+1/2(i=1n1i2+i=1n1i)+(n1)

= 2 + 1 / 2 ∗ ( ( n − 1 ) ∗ n ∗ ( 2 ∗ n − 1 ) / 6 + ( n − 1 ) ∗ n / 2 ) + n − 1 =2+1/2*((n-1)*n*(2*n-1)/6+(n-1)*n/2)+n-1 =2+1/2((n1)n(2n1)/6+(n1)n/2)+n1

= ( n 3 + 5 n ) / 6 + 1 =(n^3+5n)/6+1 =(n3+5n)/6+1

P.S.:待定系数法
三次相关,设 F ( x ) = a ∗ x 3 + b ∗ x 2 + c ∗ x + d , F(x)=a*x^3+b*x^2+c*x+d, F(x)=ax3+bx2+cx+d,代入 F ( 0 ) , F ( 1 ) , F ( 2 ) , F ( 3 ) F(0),F(1), F(2),F(3) F(0),F(1),F(2),F(3)可得 F ( x ) = ( n 3 + 5 n ) / 6 + 1 F(x)=(n^3+5n)/6+1 F(x)=(n3+5n)/6+1


球面切割空间

无球面: G ( 0 ) = 1 G(0)=1 G(0)=1;
1个球面: G ( 1 ) = 2 G(1)=2 G(1)=2;
2个球面: G ( 2 ) = 4 G(2)=4 G(2)=4;
3个球面: G ( 3 ) = 8 G(3)=8 G(3)=8;

–> 每次新加入一个球面,最多与前面所有球面都相交;加入第n个时,最多在第n个球面上形成(n-1)个圆,这(n-1)个圆最多可形成g(n-1)个新空间:

G ( n ) = G ( n − 1 ) + ( n − 1 ) G(n)=G(n-1)+(n-1) G(n)=G(n1)+(n1)

= G ( n − 2 ) + g ( n − 2 ) + g ( n − 1 ) =G(n-2)+g(n-2)+g(n-1) =G(n2)+g(n2)+g(n1)

……

= G ( 1 ) + =G(1)+ =G(1)+ ∑ i = 1 n − 1 g ( i ) \sum_{i=1}^{n-1}g(i) i=1n1g(i)

= G ( 1 ) + ∑ i = 1 n − 1 i 2 − ∑ i = 1 n − 1 i + 2 ∗ ( n − 1 ) =G(1)+\sum_{i=1}^{n-1} i^2-\sum_{i=1}^{n-1} i+2*(n-1) =G(1)+i=1n1i2i=1n1i+2(n1)

= 2 + ( n − 1 ) ∗ n ∗ ( 2 ∗ n − 1 ) / 6 − ( n − 1 ) ∗ n / 2 + 2 ∗ n − 2 =2+(n-1)*n*(2*n-1)/6-(n-1)*n/2+2*n-2 =2+(n1)n(2n1)/6(n1)n/2+2n2

= ( n 3 − 3 ∗ n 2 + 8 ∗ n ) / 3 =(n^3-3*n^2+8*n)/3 =(n33n2+8n)/3

P.S.:待定系数法
三次相关,设 G ( x ) = a ∗ x 3 + b ∗ x 2 + c ∗ x + d , G(x)=a*x^3+b*x^2+c*x+d, G(x)=ax3+bx2+cx+d,代入 G ( 0 ) , G ( 1 ) , G ( 2 ) , G ( 3 ) G(0),G(1), G(2),G(3) G(0),G(1),G(2),G(3)可得 G ( x ) = ( n 3 − 3 ∗ n 2 + 8 ∗ n ) / 3 G(x)=(n^3-3*n^2+8*n)/3 G(x)=(n33n2+8n)/3


更高维度以此类推———
当空间为d维时,

R d ( n ) = R d ( n − 1 ) + R d − 1 ( n − 1 ) R_{d} (n)=R_{d} (n-1)+R_{d-1} (n-1) Rd(n)=Rd(n1)+Rd1(n1)

可得

R d ( n ) = ( n − 1 d ) + ∑ k = 0 d ( n k ) R_{d} (n)=\begin{pmatrix} n-1 \\d \end{pmatrix}+\sum_{k=0}^{d} \begin{pmatrix} n \\k \end{pmatrix} Rd(n)=(n1d)+k=0d(nk)

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春弦_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值