【优化布局】基于遗传算法求解物流多配送中心选址matlab代码

本文提出了一种结合进化博弈与多目标优化的层次遗传算法,用于解决物流配送中心选址问题。通过双层规划模型兼顾物流部门与客户利益,利用遗传算法进行求解,并通过实例验证了模型和算法的有效性。在遗传算法中设置了种群大小、迭代次数、变异概率和交叉概率等参数,并展示了算法运行过程及最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

在考虑物流规划部门和客户双方利益的基础上,采用双层规划模型描述物流配送中心的选址问题。基于进化博弈与多目标优化的思想设计了层次遗传算法来求解该模型,通过两个遗传算法的交互迭代求解物流配送中心选址问题。最后通过算例验证了模型与算法的可行性。

2 部分代码

%% 遗传算法 优化函数

clc;close all;clear all;%清除变量

rand('seed', 100);

global XY p nodenumber maxlink;

filename='需求点分布.xlsx';

[adata,bdata,cdata]=xlsread(filename);

XY=adata(2:end,:)';

nodenumber=size(XY,1);

p=4;% 配送中心个数

maxlink=5;% 最大连接数

N=p*2;%优化问题

lb=[min(XY(:,1))*ones(1,p),min(XY(:,2))*ones(1,p)];

ub=[max(XY(:,1))*ones(1,p),max(XY(:,2))*ones(1,p)];

% 遗传算法参数

popsize=200;%遗传算法种群数

ga_max=500;%遗传算法迭代次数

PM=0.05;%变异概率

PC=0.8;%交叉概率

%% 遗传算法主程序

%性能跟踪

tracemat=zeros(ga_max,2);

gen=0;

tic;

Chrom=genChrome(popsize,N,lb,ub);% 建立种群

Value=decodingFun(Chrom,popsize);%解码染色体

%% 遗传算法优化的主循环

%进度条

wait_hand = waitbar(0,'run……', 'tag', 'TMWWaitbar');

while gen<ga_max

    %% 遗传算法选择

    FitnV=ranking(Value);%分配适应度值

    Chrom=select('rws',Chrom,FitnV,1);%选择

    Chrom=mutationGA(Chrom,popsize,PM,N,lb,ub);% 种群变异,单点变异

    Chrom=crossGA(Chrom,popsize,PC,N);% 种群交叉,单点交叉

    Value= decodingFun(Chrom,popsize);%解码染色体

    %% 计算最优

    [v1,index1]=min(Value);

    gen=gen+1;

    tracemat(gen,2)=mean(Value);

    %% 记录最优

    if gen==1

        bestChrom1=Chrom(index1,:);%记录最优染色体

        bestValue1=v1;%记录的最优值

    end

    if bestValue1>v1

        bestValue1=v1;%记录的最优值

        bestChrom1=Chrom(index1,:);

    end

    tracemat(gen,1)=bestValue1;% 保留最优

    waitbar(gen/ga_max,wait_hand);%每循环一次更新一次进步条

end

delete(wait_hand);%执行完后删除该进度条

disp('算法运行时间');

runtime1=toc

% 显示结果

disp('遗传算法优化得到的最优目标函数值');

bestValue1

disp('遗传算法优化得到的最优染色体');

bestChrom1

figure;

plot(tracemat(:,1),'r-','linewidth',1);

hold on;

plot(tracemat(:,2),'b-','linewidth',1);

legend({'种群最优值','种群均值'},'fontname','宋体');

xlabel('迭代次数','fontname','宋体');

ylabel('目标函数','fontname','宋体');

title('遗传算法优化','fontname','宋体');

x=bestChrom1;

[y,XY2,E]=myfun(x);

XY2

title1='结果';

drawnodes(XY,XY2,E,title1);

x2=x;

x2(8)=x2(8)+3;

[y,XY2,E]=myfun(x2);

3 仿真结果

4 参考文献

[1]李昌兵, 杜茂康, & 曹慧英. (2012). 基于层次遗传算法的物流配送中心选址策略. 计算机应用研究, 29(001), 57-59,78.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值