【图像检索】基于深度学习alexnet_实现图像检索附matlab代码

文章探讨了深度学习在解决基于内容的图像检索系统中的‘语义鸿沟’问题的应用。传统方法因依赖低级可视化特征导致检索效果不佳,而深度学习通过构建高层抽象特征,有效地弥合了机器与人类对图像相似性的认知差距。文中提供的代码示例展示了如何使用深度学习模型进行相似度匹配。
摘要由CSDN通过智能技术生成

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于内容的图像检索系统关键的技术是有效图像特征的获取和相似度匹配策略.在过去,基于内容的图像检索系统主要使用低级的可视化特征,无法得到满意的检索结果,所以尽管在基于内容的图像检索上花费了很大的努力,但是基于内容的图像检索依旧是计算机视觉领域中的一个挑战.在基于内容的图像检索系统中,存在的最大的问题是"语义鸿沟",即机器从低级的可视化特征得到的相似性和人从高级的语义特征得到的相似性之间的不同.传统的基于内容的图像检索系统,只是在低级的可视化特征上学习图像的特征,无法有效的解决"语义鸿沟".近些年,深度学习技术的快速发展给我们提供了希望.深度学习源于人工神经网络的研究,深度学习通过组合低级的特征形成更加抽象的高层表示属性类别或者特征,以发现数据的分布规律,这是其他算法无法实现的.受深度学习在计算机视觉、语音识别、自然语言处理、图像与视频分析、多媒体等诸多领域取得巨大成功的启发,本文将深度学习技术用于基于内容的图像检索,以解决基于内容的图像检索系统中的"语义鸿沟"问题.​

⛄ 部分代码

function ind_dis_sort = SearchResult(vec_alex, vec_googlenet, H, H2, rate)

if nargin < 5

    rate = 0.5;

end

vec_alex_list = cat(1, H.vec);

vec_googlenet_list = cat(1, H2.vec);

dis_alex = 0;

if isequal(vec_alex, 0)

else

    dis_alex = pdist2(vec_alex, vec_alex_list, 'cosine');

end

dis_googlenet = 0;

if isequal(vec_googlenet, 0)

else

    dis_googlenet = pdist2(vec_googlenet, vec_googlenet_list, 'cosine');

end

dis = rate*mat2gray(dis_alex) + (1-rate)*mat2gray(dis_googlenet);

[~, ind_dis_sort] = sort(dis);

⛄ 运行结果

⛄ 参考文献

[1] 胡二雷, 冯瑞. 基于深度学习的图像检索系统[J]. 计算机系统应用, 2017, 26(3):12.

[2] 郭升挺, 黄晞, 柯俊敏,等. 基于深度学习与拓展查询的商标图像检索方法[J]. 网络新媒体技术, 2018, 7(1):7.

[3] 孙奇平. 基于深度学习的图像检索研究[J]. 景德镇高专学报, 2018.

[4] 凯比努尔·赛地艾合买提. 基于深度学习的图像检索技术的实现[J]. 软件, 2020.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值