✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
在当今数字化时代,图像的安全性和保密性变得越来越重要。随着信息技术的发展,图像加密成为了保护图像内容的一种重要手段。本文将介绍一种基于超混沌系统结合SHA-256算法的图像加密算法,以提供一种安全可靠的图像加密方案。
超混沌系统是一种非线性、非周期的动力系统,具有高度的混沌性和随机性。它可以产生复杂且不可预测的序列,用于加密过程中的密钥生成。SHA-256算法是一种广泛应用的哈希算法,具有较高的安全性和抗攻击性。将超混沌系统和SHA-256算法结合起来,可以有效地提高图像加密的安全性。
以下是基于超混沌系统结合SHA-256算法的图像加密算法的步骤:
步骤1:密钥生成 首先,使用超混沌系统生成一个长序列的随机数作为密钥。超混沌系统的初始条件和参数设置会影响到密钥的随机性和复杂性,因此需要仔细选择。生成的密钥序列将用于后续的图像加密和解密过程。
步骤2:图像预处理 在进行图像加密之前,需要对原始图像进行预处理。预处理的目的是增加图像的复杂性和随机性,从而增加加密算法的安全性。常见的预处理方法包括图像变换、像素置换和像素扩散等。
步骤3:图像加密 利用生成的密钥序列对预处理后的图像进行加密。加密过程可以采用像素置乱、像素扩散、像素混淆等操作,以增加图像的随机性和复杂性。同时,利用SHA-256算法对加密后的图像进行哈希运算,以确保加密结果的完整性和安全性。
步骤4:图像解密 对加密后的图像进行解密操作,恢复原始图像。解密过程与加密过程相反,需要使用相同的密钥序列和操作步骤。通过反向操作,可以还原出原始图像,并确保解密结果的正确性和完整性。
步骤5:图像后处理 在图像解密完成后,可以进行图像的后处理操作。后处理的目的是对解密后的图像进行修复和优化,使其恢复到原始的视觉效果。常见的后处理方法包括图像滤波、图像增强和图像压缩等。
通过以上步骤,基于超混沌系统结合SHA-256算法的图像加密算法可以实现对图像的安全加密和解密。该算法利用超混沌系统的随机性和复杂性生成密钥,结合SHA-256算法保证加密结果的安全性和完整性。同时,预处理和后处理操作增加了加密算法的复杂性和随机性,提高了加密的安全性。这种图像加密算法可以在保护图像内容的同时,确保图像的可视性和可用性。
总结起来,基于超混沌系统结合SHA-256算法的图像加密算法在图像安全性和保密性方面具有重要的应用价值。通过合理的密钥生成、图像预处理、图像加密、图像解密和图像后处理等步骤,可以实现对图像的安全加密和解密。这种图像加密算法在信息安全领域有着广泛的应用前景,对于保护个人隐私和商业机密具有重要意义。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 程东升谭旭许志良陈宝文张运生.结合四维超混沌系统和位分解的图像加密算法研究[J].电子科技大学学报, 2018, 047(006):906-912.
[2] 陈娇娇.基于超混沌和多涡卷混沌系统的图像加密算法研究[J].[2023-10-24].
[3] 徐扬黄迎久李海荣.基于一种广义Lorenz-Stenflo超混沌系统的数字图像加密算法的性能研究[J].内蒙古科技大学学报, 2017, 036(003):267-272.
[4] 郑永爱,王莹莹,王咏梅.基于混沌系统的图像加密算法设计与应用[J]. 2021.DOI:10.3969/j.issn.1673-1131.2021.07.013.