✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
无人机技术的快速发展为各行各业带来了前所未有的便利和机遇。在农业、环境监测、物流配送等领域,无人机的应用已经成为一种趋势。然而,在复杂的山地环境下,无人机的路径规划问题变得更加复杂和困难。如何在这样的环境中有效规划无人机的三维路径成为了一个急需解决的问题。
为了解决这一问题,研究者们提出了基于蜣螂优化算法(DBO)的路径规划方法。蜣螂优化算法是一种基于自然界蚂蚁觅食行为的启发式算法,它模拟了蚂蚁在寻找食物时释放信息素、选择路径的过程,具有较强的全局寻优能力和较快的收敛速度。因此,将蜣螂优化算法应用于无人机路径规划中,可以有效地解决复杂环境下的路径规划问题。
在这项研究中,研究者首先对复杂山地环境进行了建模和仿真,包括地形、植被、气象等因素。然后,他们将无人机的路径规划问题转化为了一个多目标优化问题,考虑了飞行距离、风险程度、能耗等多个因素。接着,他们利用蜣螂优化算法对这个多目标优化问题进行求解,得到了一组最优路径方案。
研究结果表明,基于蜣螂优化算法的无人机路径规划方法在复杂山地环境下具有较好的适用性和效果。与传统的路径规划方法相比,该方法能够更好地克服地形起伏、植被覆盖等因素对无人机飞行的影响,提高了路径规划的准确性和可行性。因此,这项研究为解决复杂环境下无人机路径规划问题提供了一种新的思路和方法。
然而,需要指出的是,基于蜣螂优化算法的无人机路径规划方法也存在一些局限性和不足之处。例如,在算法收敛速度、局部最优解的避免等方面仍有待进一步改进和优化。因此,未来的研究可以在此基础上继续深入,探索更加高效和精确的无人机路径规划方法,为无人机在复杂环境下的应用提供更加可靠的支持。
总之,基于蜣螂优化算法的无人机三维路径规划研究为解决复杂山地环境下无人机路径规划问题提供了一种新的思路和方法。该方法的提出和应用不仅拓展了无人机路径规划的研究领域,也为无人机在复杂环境下的应用提供了更加可靠的支持。随着无人机技术的不断发展和完善,相信基于蜣螂优化算法的无人机路径规划方法必将在实际应用中发挥越来越重要的作用。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
本程序参考以下中文EI期刊,程序注释清晰,干货满满。
[1] 杜晓玉,郭启程,李茵茵,et al.城市环境下基于改进鲸鱼算法的无人机三维路径规划方法[J].计算机科学, 2021, 48(12):8.DOI:10.11896/jsjkx.201000021.
[2] 杜晓玉,郭启程,李茵茵,等.城市环境下基于改进鲸鱼算法的无人机三维路径规划方法:CN202010683391.7[P].CN111880561B[2023-12-05].
🎈 部分理论引用网络文献,若有侵权联系博主删除