【脑电信号】基于傅里叶变换和带通滤波器实现脑电信号EEG目标识别附Matlab仿真

本文介绍了脑电信号EEG的特点,探讨了其目标识别在脑机接口、医疗诊断等方面的应用。详细阐述了利用傅里叶变换和带通滤波器进行预处理和信息提取的方法,并展示了在P300ERP识别中的高效率,达到90%以上的识别率,展示了该技术的实用性和前景。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

1. 脑电信号EEG简介

脑电信号(EEG)是大脑皮层神经元群体同步放电产生的生物电位,反映了大脑的电活动。EEG信号具有以下特点:

  • **微弱性:**EEG信号的幅度很小,通常只有几十微伏。

  • **复杂性:**EEG信号包含了多种频率成分,从0.5Hz到100Hz不等。

  • **非平稳性:**EEG信号随时间不断变化,受多种因素影响,如情绪、环境、任务等。

2. 脑电信号EEG的目标识别

脑电信号EEG的目标识别是指从EEG信号中提取出感兴趣的信息,如特定事件的发生、情绪状态的变化等。EEG信号的目标识别具有广泛的应用前景,如脑机接口、医疗诊断、情感识别等。

3. 基于傅里叶变换和带通滤波器的EEG目标识别方法

傅里叶变换是一种将时域信号转换为频域信号的数学工具。通过傅里叶变换,我们可以将EEG信号分解为不同频率成分,并提取出感兴趣的信息。

带通滤波器是一种只允许特定频率范围信号通过的滤波器。通过带通滤波器,我们可以滤除EEG信号中的噪声,并增强感兴趣的信息。

基于傅里叶变换和带通滤波器的EEG目标识别方法主要包括以下步骤:

  1. 对EEG信号进行预处理,去除噪声和伪迹。

  2. 将EEG信号进行傅里叶变换,得到频域信号。

  3. 设计带通滤波器,滤除EEG信号中的噪声,并增强感兴趣的信息。

  4. 将滤波后的信号进行逆傅里叶变换,得到时域信号。

  5. 从时域信号中提取出感兴趣的信息。

📣 部分代码

load('eeg.mat');%读取数据load('label.mat');data=x;temp=0;fs=1000;Ap=1;Ah=40;fp_l=3;fp_h=38;fs_l=1;fs_h=46;wp=[fp_l fp_h]*2/fs; ws=[fs_l fs_h]*2/fs;[N,wc]=ellipord(wp,ws,Ap,Ah);[b,a]=ellip(N,Ap,Ah,wc,'bandpass');Most=zeros(1,20);j1=1;for i1=1:8        t=zeros(1,3);        data2=x(i1,1000:3500,j1);        [f1,f2,f3]=lvbo2(b,a,data2);        t(1)=judge(f1);%确定类型        t(2)=judge(f2/2);%确定类型        t(3)=judge(f3/4);%确定类型        type(j1,i1)=mode(t);    end    Most(j1)=mode(type(j1,:));    if Most(j1)==x_label(j1)        temp=temp+1;    endpercent=temp/20;

⛳️ 运行结果

4. 实验结果

我们使用基于傅里叶变换和带通滤波器的EEG目标识别方法对P300事件相关电位(ERP)进行了识别。P300 ERP是一种与注意和记忆相关的ERP成分,在EEG信号中表现为一个正向波峰。

实验结果表明,基于傅里叶变换和带通滤波器的EEG目标识别方法能够有效地识别P300 ERP。识别率达到了90%以上。

5. 结论

基于傅里叶变换和带通滤波器的EEG目标识别方法是一种简单有效的方法。该方法能够有效地识别EEG信号中的目标信息,具有广泛的应用前景。

🔗 参考文献

[1]马彦臻.基于运动想象的脑电信号处理方法研究[D].天津工程师范学院[2024-02-07].DOI:CNKI:CDMD:2.1013.004424.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值