✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
车辆路径规划问题(VRP)是运筹学中的经典问题,广泛应用于物流配送、城市交通等领域。双层带容量车辆路径规划问题(CVRP)是VRP的一个变种,考虑了车辆的双层结构和容量限制。本文提出了一种基于整数规划的CVRP求解方法,该方法将CVRP问题建模为一个混合整数线性规划(MILP)模型,并使用求解器对其进行求解。
引言
CVRP问题是一个NP难问题,即不存在多项式时间内的精确算法。因此,通常采用启发式算法或近似算法来求解CVRP问题。整数规划是一种求解组合优化问题的有效方法,它将问题建模为一个线性规划模型,并使用整数变量来表示离散决策。
整数规划模型
CVRP问题的整数规划模型如下:
min ∑_{i∈N} ∑_{j∈N} c_{ij} x_{ij}
其中:
-
N是节点集合,包括起点和终点
-
c_{ij}是节点i和j之间的距离
-
x_{ij}是车辆从节点i到节点j行驶的二进制变量
约束条件:
-
∑_{j∈N} x_{ij} = 1, ∀i ∈ N
-
∑_{i∈N} x_{ij} = 1, ∀j ∈ N
-
∑_{i∈N} ∑_{j∈N} q_{ij} x_{ij} ≤ Q, ∀k ∈ K
-
x_{ij} ∈ {0, 1}, ∀i, j ∈ N
其中:
-
q_{ij}是车辆从节点i到节点j运输的货物量
-
Q是车辆的容量
-
K是车辆集合
求解方法
本文使用CPLEX求解器来求解CVRP问题的整数规划模型。CPLEX是一个商业求解器,专门用于求解MILP问题。
📣 部分代码
function modulator = getModulator(modType, sps, fs)
%getModulator Modulation function selector
% MOD = getModulator(TYPE,SPS,FS) returns the modulator function handle
% MOD based on TYPE. SPS is the number of samples per symbol and FS is
% the sample rate.
switch modType
case "BPSK"
modulator = @(x)bpskModulator(x,sps);
case "QPSK"
modulator = @(x)qpskModulator(x,sps);
case "8PSK"
modulator = @(x)psk8Modulator(x,sps);
case "16QAM"
modulator = @(x)qam16Modulator(x,sps);
case "64QAM"
modulator = @(x)qam64Modulator(x,sps);
case "GFSK"
modulator = @(x)gfskModulator(x,sps);
case "CPFSK"
modulator = @(x)cpfskModulator(x,sps);
case "PAM4"
modulator = @(x)pam4Modulator(x,sps);
case "B-FM"
modulator = @(x)bfmModulator(x, fs);
case "DSB-AM"
modulator = @(x)dsbamModulator(x, fs);
case "SSB-AM"
modulator = @(x)ssbamModulator(x, fs);
end
end
function src = getSource(modType, sps, spf, fs)
%getSource Source selector for modulation types
% SRC = getSource(TYPE,SPS,SPF,FS) returns the data source
% for the modulation type TYPE, with the number of samples
% per symbol SPS, the number of samples per frame SPF, and
% the sampling frequency FS.
switch modType
case {"BPSK","GFSK","CPFSK"}
M = 2;
src = @()randi([0 M-1],spf/sps,1);
case {"QPSK","PAM4"}
M = 4;
src = @()randi([0 M-1],spf/sps,1);
case "8PSK"
M = 8;
src = @()randi([0 M-1],spf/sps,1);
case "16QAM"
M = 16;
src = @()randi([0 M-1],spf/sps,1);
case "64QAM"
M = 64;
src = @()randi([0 M-1],spf/sps,1);
case {"B-FM","DSB-AM","SSB-AM"}
src = @()getAudio(spf,fs);
end
end
⛳️ 运行结果
实验结果
本文在不同的数据集上对提出的方法进行了实验,实验结果表明,该方法能够有效地求解CVRP问题,并获得高质量的解。
结论
本文提出了一种基于整数规划的CVRP求解方法,该方法将CVRP问题建模为一个MILP模型,并使用求解器对其进行求解。实验结果表明,该方法能够有效地求解CVRP问题,并获得高质量的解。该方法可以应用于物流配送、城市交通等领域,为实际问题的求解提供了一种有效的手段。
🔗 参考文献
[1] 马华伟,马凯,郭君.考虑多投递的带无人机车辆路径规划问题研究[J].计算机工程, 2022(008):048.DOI:10.19678/j.issn.1000-3428.0062260.
[2] 高志高.基于GIS的带容量限制物流车辆路径规划与系统实现[D].哈尔滨工业大学,2019.
[3] 孙丽君,胡祥培,王征.车辆路径规划问题及其求解方法研究进展[J].系统工程, 2006, 24(11):7.DOI:10.3969/j.issn.1001-4098.2006.11.006.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类