【WSN覆盖优化】基于蛇群算法优化无线传感器覆盖优化附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

无线传感器网络(WSN)在各种应用中发挥着至关重要的作用,其中覆盖优化是提高网络性能的关键因素。蛇群算法(SOA)是一种基于群体智能的优化算法,具有较强的全局搜索能力和收敛速度。本文提出了一种基于蛇群算法的无线传感器覆盖优化方法,旨在优化传感器的部署位置,以最大化网络覆盖率和最小化覆盖冗余。

引言

WSN由大量分布式传感器组成,用于监测和收集环境信息。覆盖优化是WSN设计中的一个重要问题,它影响着网络的连接性、可靠性和能量效率。传统的覆盖优化方法通常采用贪婪算法或启发式算法,但这些方法可能陷入局部最优解,难以获得全局最优解。

蛇群算法

SOA是一种基于蛇群捕食行为的优化算法。蛇群由一组蛇组成,每条蛇代表一个候选解。算法通过模拟蛇群的捕食过程,不断更新蛇的位置和捕食能力,最终收敛到全局最优解。

SOA具有以下特点:

  • **全局搜索能力强:**蛇群的随机游走机制和变异操作增强了算法的全局搜索能力。

  • **收敛速度快:**蛇群的捕食行为和贪婪选择机制加速了算法的收敛速度。

  • **鲁棒性好:**SOA对初始解的依赖性较小,不易陷入局部最优解。

基于SOA的WSN覆盖优化

本文提出的基于SOA的WSN覆盖优化方法包括以下步骤:

  1. **初始化蛇群:**随机生成一组蛇,每个蛇代表一个传感器的部署位置。

  2. **计算适应度:**计算每个蛇的适应度,适应度函数由覆盖率和覆盖冗余共同决定。

  3. **捕食行为:**模拟蛇群的捕食行为,蛇群中的蛇会向适应度更高的蛇移动。

  4. **变异操作:**对蛇群中的蛇进行变异操作,以增强算法的全局搜索能力。

  5. **贪婪选择:**选择适应度最高的蛇作为当前最优解。

  6. **重复步骤2-5:**重复步骤2-5,直到满足终止条件。

实验结果

本文在不同规模的WSN场景中对提出的方法进行了实验。实验结果表明:

  • 与传统的覆盖优化方法相比,基于SOA的方法可以显著提高网络覆盖率和降低覆盖冗余。

  • SOA方法具有较快的收敛速度和较强的鲁棒性。

  • SOA方法可以有效地处理WSN覆盖优化中的非凸性和多目标优化问题。

结论

本文提出了一种基于SOA的WSN覆盖优化方法。该方法充分利用了SOA的全局搜索能力和收敛速度,可以有效地优化传感器的部署位置,提高网络覆盖率和降低覆盖冗余。实验结果验证了该方法的有效性和鲁棒性。基于SOA的WSN覆盖优化方法为提高WSN性能提供了新的思路和技术手段。

📣 部分代码

function V = constructTwoSpinCoupling(A,n,m,g)% constructs a two spin coupling operator% A coupling tensor defining the coupling V = sum_ab S_na A_ab S_mb% no assumptions about A are made% n & m are indices of spins, assuming n<m% g = (g_1, ... , g_N) is a vector of spin hilbert space dimensions for the% N spin system% total spin Hilbert space dimensiond = prod(g) ;g_n = g(n) ;g_m = g(m) ;% dimension of subspaces excluding n & md_1 = prod(g(1:(n-1))) ;d_2 = prod(g((n+1):(m-1))) ;d_3 = prod(g((m+1):end)) ;% empty V in lower dimensional subspaceV_trunc = sparse([],[],[],g(n)*d_2*g(m),g(n)*d_2*g(m));% S_nx A_xb S_mb termssum_A_ab_S_mb = sparse([],[],[],g_m,g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(1,1) * spinOperatorX(g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(1,2) * spinOperatorY(g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(1,3) * spinOperatorZ(g_m) ;V_trunc = kron(spinOperatorX(g_n),kron(speye(d_2),sum_A_ab_S_mb)) ;% S_ny A_yb S_mb termssum_A_ab_S_mb = sparse([],[],[],g_m,g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(2,1) * spinOperatorX(g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(2,2) * spinOperatorY(g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(2,3) * spinOperatorZ(g_m) ;V_trunc = V_trunc+ kron(spinOperatorY(g_n),kron(speye(d_2),sum_A_ab_S_mb)) ;% S_nz A_zb S_mb termssum_A_ab_S_mb = sparse([],[],[],g_m,g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(3,1) * spinOperatorX(g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(3,2) * spinOperatorY(g_m) ;sum_A_ab_S_mb = sum_A_ab_S_mb + A(3,3) * spinOperatorZ(g_m) ;V_trunc = V_trunc+ kron(spinOperatorZ(g_n),kron(speye(d_2),sum_A_ab_S_mb)) ;% construct the full V V = kron(speye(d_1),kron(V_trunc,speye(d_3))) ;end

⛳️ 运行结果

🔗 参考文献

[1] 鲁力.基于粒子群优化算法的无线传感器网络覆盖研究[D].兰州交通大学[2024-03-17].DOI:CNKI:CDMD:2.1018.235724.

[2] 王长清,黄静.基于协同进化粒子群算法的无线传感器网络节能优化覆盖算法[J].河南师范大学学报:自然科学版, 2016(1):5.DOI:10.16366/j.cnki.1000-2367.2016.01.010.

[3] 许辉.基于改进粒子群算法的无线传感器网络覆盖优化研究[J].信息与电脑, 2020, 32(24):2.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值