✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
无线传感器网络(WSN)在各种应用中发挥着至关重要的作用,其中覆盖优化是提高网络性能的关键因素。蛇群算法(SOA)是一种基于群体智能的优化算法,具有较强的全局搜索能力和收敛速度。本文提出了一种基于蛇群算法的无线传感器覆盖优化方法,旨在优化传感器的部署位置,以最大化网络覆盖率和最小化覆盖冗余。
引言
WSN由大量分布式传感器组成,用于监测和收集环境信息。覆盖优化是WSN设计中的一个重要问题,它影响着网络的连接性、可靠性和能量效率。传统的覆盖优化方法通常采用贪婪算法或启发式算法,但这些方法可能陷入局部最优解,难以获得全局最优解。
蛇群算法
SOA是一种基于蛇群捕食行为的优化算法。蛇群由一组蛇组成,每条蛇代表一个候选解。算法通过模拟蛇群的捕食过程,不断更新蛇的位置和捕食能力,最终收敛到全局最优解。
SOA具有以下特点:
-
**全局搜索能力强:**蛇群的随机游走机制和变异操作增强了算法的全局搜索能力。
-
**收敛速度快:**蛇群的捕食行为和贪婪选择机制加速了算法的收敛速度。
-
**鲁棒性好:**SOA对初始解的依赖性较小,不易陷入局部最优解。
基于SOA的WSN覆盖优化
本文提出的基于SOA的WSN覆盖优化方法包括以下步骤:
-
**初始化蛇群:**随机生成一组蛇,每个蛇代表一个传感器的部署位置。
-
**计算适应度:**计算每个蛇的适应度,适应度函数由覆盖率和覆盖冗余共同决定。
-
**捕食行为:**模拟蛇群的捕食行为,蛇群中的蛇会向适应度更高的蛇移动。
-
**变异操作:**对蛇群中的蛇进行变异操作,以增强算法的全局搜索能力。
-
**贪婪选择:**选择适应度最高的蛇作为当前最优解。
-
**重复步骤2-5:**重复步骤2-5,直到满足终止条件。
实验结果
本文在不同规模的WSN场景中对提出的方法进行了实验。实验结果表明:
-
与传统的覆盖优化方法相比,基于SOA的方法可以显著提高网络覆盖率和降低覆盖冗余。
-
SOA方法具有较快的收敛速度和较强的鲁棒性。
-
SOA方法可以有效地处理WSN覆盖优化中的非凸性和多目标优化问题。
结论
本文提出了一种基于SOA的WSN覆盖优化方法。该方法充分利用了SOA的全局搜索能力和收敛速度,可以有效地优化传感器的部署位置,提高网络覆盖率和降低覆盖冗余。实验结果验证了该方法的有效性和鲁棒性。基于SOA的WSN覆盖优化方法为提高WSN性能提供了新的思路和技术手段。
📣 部分代码
function V = constructTwoSpinCoupling(A,n,m,g)
% constructs a two spin coupling operator
% A coupling tensor defining the coupling V = sum_ab S_na A_ab S_mb
% no assumptions about A are made
% n & m are indices of spins, assuming n<m
% g = (g_1, ... , g_N) is a vector of spin hilbert space dimensions for the
% N spin system
% total spin Hilbert space dimension
d = prod(g) ;
g_n = g(n) ;
g_m = g(m) ;
% dimension of subspaces excluding n & m
d_1 = prod(g(1:(n-1))) ;
d_2 = prod(g((n+1):(m-1))) ;
d_3 = prod(g((m+1):end)) ;
% empty V in lower dimensional subspace
V_trunc = sparse([],[],[],g(n)*d_2*g(m),g(n)*d_2*g(m));
% S_nx A_xb S_mb terms
sum_A_ab_S_mb = sparse([],[],[],g_m,g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(1,1) * spinOperatorX(g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(1,2) * spinOperatorY(g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(1,3) * spinOperatorZ(g_m) ;
V_trunc = kron(spinOperatorX(g_n),kron(speye(d_2),sum_A_ab_S_mb)) ;
% S_ny A_yb S_mb terms
sum_A_ab_S_mb = sparse([],[],[],g_m,g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(2,1) * spinOperatorX(g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(2,2) * spinOperatorY(g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(2,3) * spinOperatorZ(g_m) ;
V_trunc = V_trunc+ kron(spinOperatorY(g_n),kron(speye(d_2),sum_A_ab_S_mb)) ;
% S_nz A_zb S_mb terms
sum_A_ab_S_mb = sparse([],[],[],g_m,g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(3,1) * spinOperatorX(g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(3,2) * spinOperatorY(g_m) ;
sum_A_ab_S_mb = sum_A_ab_S_mb + A(3,3) * spinOperatorZ(g_m) ;
V_trunc = V_trunc+ kron(spinOperatorZ(g_n),kron(speye(d_2),sum_A_ab_S_mb)) ;
% construct the full V
V = kron(speye(d_1),kron(V_trunc,speye(d_3))) ;
end
⛳️ 运行结果
🔗 参考文献
[1] 鲁力.基于粒子群优化算法的无线传感器网络覆盖研究[D].兰州交通大学[2024-03-17].DOI:CNKI:CDMD:2.1018.235724.
[2] 王长清,黄静.基于协同进化粒子群算法的无线传感器网络节能优化覆盖算法[J].河南师范大学学报:自然科学版, 2016(1):5.DOI:10.16366/j.cnki.1000-2367.2016.01.010.
[3] 许辉.基于改进粒子群算法的无线传感器网络覆盖优化研究[J].信息与电脑, 2020, 32(24):2.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类